Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 14(1): 79-95, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049196

RESUMO

Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.


Assuntos
Glucose , Fígado , Glucose/metabolismo , Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Hepatócitos/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
2.
Biochem Biophys Res Commun ; 694: 149416, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147697

RESUMO

The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.


Assuntos
Glucose , Hepatócitos , Hepatócitos/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ácido Láctico , Trifosfato de Adenosina/metabolismo , Piruvatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA