Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 168: 115683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832402

RESUMO

Following brain injury, neural stem cells (NSCs) can generate mature neurons and replace damaged cells. However, the capacity of endogenous NSCs to self-repair from injured brain is limited as most NSCs die before becoming mature neurons. Therefore, a boosting endogenous NSCs by pharmacological support offers the potential to repair the damaged brain. Recently, small molecules have hold considerable promise for neuron regeneration and repair as they can penetrate the blood-brain barrier easily. Senkyunolide I (SEI) is a bioactive constituent derived from traditional Chinese medicines Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, and was found to able to prevent ischemic stroke. This study examined the effects of SEI on the proliferation and neuronal lineage differentiation of prepared neural stem/progenitor cells (NS/PCs). The NS/PC proliferation was determined by 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt, and neurosphere formation assays. The NS/PC differentiation was also investigated by immunocytochemistry, and western blotting was employed to measure phosphorylated Akt (pAkt) and GSK-3ß (pGSK-3ß), and active-ß-catenin protein levels. We showed that the NS/PC proliferation was enhanced after SEI exposure. Elevated cell numbers were also observed in neurospheres, which were incubated with SEI for 3 days, whereas the NS/PC differentiation was decreased after SEI exposure for 5 days. Furthermore, SEI upregulated pAkt/Akt and active-ß-catenin levels and increased NS/PC proliferation after SEI treatment was reversed by phosphatidylinositol 3-kinase inhibitor LY294002. downregulated differentiated processes. Thus, SEI promoted the NS/PC proliferation and suppressed NS/PC differentiation into neurons and/or astrocytes, therefore SEI could be an interesting and promising candidate for stimulating NSCs.


Assuntos
Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , Células-Tronco Neurais/metabolismo , Diferenciação Celular
2.
Biomed Pharmacother ; 140: 111696, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044281

RESUMO

Glutamate-induced neurotoxicity is one of the most important pathogenic mechanisms in neurological diseases and is widely used as an in vitro model for ischemic stroke. Senkyunolide I (SEI), an active constituent derived from traditional Chinese medicine Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has been shown to have beneficial effects against focal cerebral ischemia-reperfusion in rats. However, the mechanisms underlying SEI-mediated neuroprotection remain not well understood. Thus, we explored the influence of SEI in glutamate-mediated injury to mouse neuroblastoma (Neuro2a) cells and determined the mechanisms involved. Neuro2a cells were treated with SEI under exposure to glutamate for 24 h. Cell viability was assessed by using WST-1 reagents, and apoptosis was evaluated using Annexin V-FITC and a PI double staining kit. The protein expression levels of p-AKT, AKT, p-GSK3ß, GSK3ß, p-p38, p38, p-ERK, ERK, p-JNK, JNK, Bcl-2, Bax, Bcl-xl, p-Bad, Bad, p53, and cleaved caspase-3 were determined by Western blot analysis. Glutamate significantly decreased cell viability and elevated the level of apoptosis. Treatment with SEI reversed those effects. Furthermore, the expression of p-JNK/JNK and cleaved caspase-3 were also reduced after treatment with SEI. Our findings demonstrate that SEI protected Neuro2a cells against glutamate toxicity by regulating JNK/caspase-3 pathway and apoptosis. Thus, SEI maybe a promising candidate for neuroprotection.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroproteção/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Exp Cell Res ; 400(1): 112440, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359470

RESUMO

Neurons require adhesive scaffolds for their growth and differentiation. Laminins are a major cell adhesive component of basement membranes and have various biological activities in the peripheral and central nervous systems. Here, we evaluated the biological activities of 5 peptides derived from laminin-111 as a scaffold for mouse neuroblastoma Neuro2a cells and rat neural stem/progenitor cells (NPCs). The 5 peptides showed Neuro2a cell attachment activity similar to that of poly-d-lysine. However, when NPCs were cultured on the peptides, 2 syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139-150), demonstrated significantly higher cell attachment and neurite extension activities than other peptides including integrin-binding ones. Long-term cell culture experiments showed that both AG73 and C16 supported the growth of neurons and astrocytes that had differentiated from NPCs. Furthermore, C16 markedly promoted the expression of neuronal markers such as synaptosomal-associated protein-25 and syntaxin 1A. These results indicate that AG73 and C16 are useful for NPC cultures and that C16 can be applied to specialized research on synapses in differentiated neurons. These peptides have the potential for use as valuable biomaterials for NPC research.


Assuntos
Laminina/química , Células-Tronco Neurais/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neurogênese , Fragmentos de Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Quitosana/química , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ratos , Ratos Wistar , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA