Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Renal Physiol ; 327(4): F581-F590, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088648

RESUMO

Intrarenal dopamine plays a protective role against the development of diabetic nephropathy during the early stages of the disease. In streptozotocin-induced diabetic mice with renal-specific catechol-O-methyl transferase knockout, intrarenal dopamine was found to suppress glomerular hyperfiltration, reduce oxidative stress and inflammation, and inhibit fibrosis. However, although dopamine activation in streptozotocin-induced diabetic models has been shown to provide renal protection, the role of dopamine in models of naturally induced diabetes mellitus is still unclear. In the present study, we orally administered 10 mg/kg benserazide, a peripheral decarboxylase inhibitor, to spontaneously diabetic Torii rats daily to investigate the activation of the renal dopaminergic system during the progression of diabetic nephropathy. Our findings show that peripheral dopamine decreased urinary 8-iso-prostaglandin F2α and suppressed increases in plasma cystatin C levels. This study demonstrates that a reduction in peripheral dopamine can exacerbate renal dysfunction, even in the early stages of diabetic nephropathy characterized by glomerular hyperfiltration, thereby clarifying the pivotal role of endogenous peripheral dopamine in modulating oxidative stress and kidney performance.NEW & NOTEWORTHY By administering a peripheral decarboxylase inhibitor, we revealed that peripheral dopamine inhibits both the increase in urinary 8-iso-prostaglandin F2α, an oxidative stress marker, and the increase in plasma cystatin C, an early renal dysfunction marker, even in the early stages of diabetic nephropathy characterized by glomerular hyperfiltration. By visualizing renal dopamine precursor distribution, we highlighted the role of endogenous renal dopamine in oxidative stress and renal function following the onset of glomerular hyperfiltration.


Assuntos
Cistatina C , Nefropatias Diabéticas , Dopamina , Animais , Dopamina/metabolismo , Dopamina/urina , Nefropatias Diabéticas/metabolismo , Masculino , Cistatina C/sangue , Estresse Oxidativo/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Ratos , Ratos Endogâmicos SHR , Dinoprosta/análogos & derivados , Dinoprosta/urina , Dinoprosta/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos
2.
EMBO Rep ; 24(1): e54042, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36341521

RESUMO

Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Hipóxia/genética , Ligação Proteica , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular/genética , Proteínas Repressoras/genética
3.
Sci Prog ; 104(3): 368504211039590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559590

RESUMO

The incidence of breast cancer increases annually, and it has become common within families of breast cancer patients. Interleukin-2 activates cytotoxic T lymphocytes, which are important for cancer immunity. To identify markers of increased familial breast cancer risk, soluble interleukin-2 receptor levels and immunologic factors were investigated in familial breast cancer and non-familial breast cancer patients. Of 106 untreated breast cancer patients in this study, 24 had familial breast cancer and 82 had non-familial breast cancer. The patients' soluble interleukin-2 receptor, interleukin-10, vascular endothelial growth factor, interleukin-17, regulatory T cell, myeloid-derived suppressor cell, white blood cell, and C-reactive protein levels, and their neutrophil-to-lymphocyte ratios were measured, and their prognoses were compared according to the soluble interleukin-2 receptor levels. Additionally, postoperative tissues from the patients with high soluble interleukin-2 receptor levels were stained with programmed cell death ligand 1 and cluster of differentiation 8. The soluble interleukin-2 receptor level in the familial breast cancer patients was significantly higher, and it showed significantly stronger correlations with the neutrophil-to-lymphocyte ratio and the interleukin-10, vascular endothelial growth factor, interleukin-17, regulatory T cell, myeloid-derived suppressor cell, white blood cell, and C-reactive protein levels, than in the non-familial breast cancer patients. The regulatory T cell and myeloid-derived suppressor cell levels were significantly higher in the patients with high soluble interleukin-2 receptor levels, and the overall survival and disease-free-survival rates were significantly worse for the familial breast cancer patients than for the non-familial breast cancer patients. Triple-negative breast cancer tissues from the familial breast cancer patients with high soluble interleukin-2 receptor levels stained well for programmed cell death ligand 1 and cluster of differentiation 8. Soluble interleukin-2 receptor levels can be used to predict the prognosis of familial breast cancer patients. Prospectively identifying patients who are less likely to have non-familial breast cancer is vital for improving their overall survival.


Assuntos
Interleucina-2 , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama , Proteína C-Reativa , Humanos , Interleucina-17 , Ligantes , Prognóstico , Receptores de Interleucina-2 , Fator A de Crescimento do Endotélio Vascular
4.
Sci Rep ; 11(1): 6668, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758250

RESUMO

Developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, the most severe end of neonatal diabetes mellitus, is caused by mutation in the ATP-sensitive potassium (KATP) channel. In addition to diabetes, DEND patients present muscle weakness as one of the symptoms, and although the muscle weakness is considered to originate in the brain, the pathological effects of mutated KATP channels in skeletal muscle remain elusive. Here, we describe the local effects of the KATP channel on muscle by expressing the mutation present in the KATP channels of the DEND syndrome in the murine skeletal muscle cell line C2C12 in combination with computer simulation. The present study revealed that the DEND mutation can lead to a hyperpolarized state of the muscle cell membrane, and molecular dynamics simulations based on a recently reported high-resolution structure provide an explanation as to why the mutation reduces ATP sensitivity and reveal the changes in the local interactions between ATP molecules and the channel.


Assuntos
Diabetes Mellitus/genética , Epilepsia/genética , Doenças do Recém-Nascido/genética , Canais KATP/química , Canais KATP/genética , Músculo Esquelético/metabolismo , Mutação , Transtornos Psicomotores/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Expressão Gênica , Glucose/metabolismo , Canais KATP/metabolismo , Potenciais da Membrana , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
5.
J Food Drug Anal ; 29(4): 653-675, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649140

RESUMO

Oxytocin (Oxt) is known to regulate social communication, stress and body weight. The activation of Oxt receptors (OTR) has clinical potential to abate stress disorders and metabolic syndrome. Kamikihito (KKT) is a traditional Japanese medicine used to treat psychological stress-related disorders. We investigated the effects of KKT, its ingredients and chemical components on Oxt neurons and OTR. C-Fos expression was examined after oral and peripheral administration of KKT in rats. Electrophysiological change of Oxt neurons and Oxt release upon application of KKT were measured in rat brain slice. The direct effect of KKT, its ingredients and its chemical components were examined by cytosolic Ca2+([Ca2+]i) measurement in Oxt neurons and OTR-expressing HEK293 cells. Both intraperitoneal and oral administration of KKT in rats induced c-Fos expression in neurons of the paraventricular nucleus (PVN) including Oxt neurons. Application of KKT induced activation of Oxt neurons and Oxt release. KKT increased [Ca2+]i in OTR-expressing HEK293 cells, and failed to activate with OTR antagonist. KKT-induced PVN Oxt neuron activation was also attenuated by OTR antagonist. Seven chemical components (rutin, ursolic acid, (Z )-butylidenephtalide, p-cymene, senkunolide, [6]-shogaol, [8]-shogaol) of three ingredients (Zizyphi Fructus, Angelicae Acutilobae Radix, Zingiberis Rhizoma) from KKT had potential to activate OTR. KKT can directly activate PVN Oxt neurons by interacting with OTR. The interaction of seven chemical components from KKT may contribute to activate OTR. Effect of KKT on Oxt neurons and OTR may contribute to the treatment of Oxt related disorders.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Células HEK293 , Humanos , Japão , Medicina Tradicional do Leste Asiático , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
6.
Sci Rep ; 10(1): 694, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959927

RESUMO

Circulating lipopolysaccharide (LPS) concentrations are often elevated in patients with sepsis or various endogenous diseases related to bacterial translocation from the gut. Systemic inflammatory responses induced by endotoxemia induce severe involuntary loss of skeletal muscle, termed muscle wasting, which adversely affects the survival and functional outcomes of these patients. Currently, no drugs are available for the treatment of endotoxemia-induced skeletal muscle wasting. Here, we tested the effects of TAK-242, a Toll-like receptor 4 (TLR4)-specific signalling inhibitor, on myotube atrophy in vitro and muscle wasting in vivo induced by endotoxin. LPS treatment of murine C2C12 myotubes induced an inflammatory response (increased nuclear factor-κB activity and interleukin-6 and tumour necrosis factor-α expression) and activated the ubiquitin-proteasome and autophagy proteolytic pathways (increased atrogin-1/MAFbx, MuRF1, and LC-II expression), resulting in myotube atrophy. In mice, LPS injection increased the same inflammatory and proteolytic pathways in skeletal muscle and induced atrophy, resulting in reduced grip strength. Notably, pretreatment of cells or mice with TAK-242 reduced or reversed all the detrimental effects of LPS in vitro and in vivo. Collectively, our results indicate that pharmacological inhibition of TLR4 signalling may be a novel therapeutic intervention for endotoxemia-induced muscle wasting.


Assuntos
Endotoxemia/complicações , Fibras Musculares Esqueléticas/citologia , Atrofia Muscular/prevenção & controle , Sulfonamidas/administração & dosagem , Animais , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
J Med Case Rep ; 13(1): 381, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870441

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease is defined as an inherited disorder characterized by renal cyst formation due to mutations in the PKD1 or PKD2 gene, whereas tuberous sclerosis complex is an autosomal dominant neurocutaneous syndrome caused by mutation or deletion of the TSC2 gene. A TSC2/PKD1 contiguous gene syndrome, which is caused by a chromosomal mutation that disrupts both the TSC2 and PKD1 genes, has been identified in patients with tuberous sclerosis complex and severe early-onset autosomal dominant polycystic kidney disease. The tumor tissue of patients with breast cancer with contiguous gene syndrome has a high mutation burden and produces several neoantigens. A diffuse positive immunohistochemistry staining for cluster of differentiation 8+ in the T cells of breast cancer tissue is consistent with neoantigen production due to high mutation burden. CASE PRESENTATION: A 61-year-old Japanese woman who had been undergoing dialysis for 23 years because of end-stage renal failure secondary to autosomal dominant polycystic kidney disease was diagnosed as having triple-negative breast cancer and underwent mastectomy in 2015. She had a history of epilepsy and skin hamartoma. Her grandmother, mother, two aunts, four cousins, and one brother were also on dialysis for autosomal dominant polycystic kidney disease. Her brother had epilepsy and a brain nodule. Another brother had a syndrome of kidney failure, intellectual disability, and diabetes mellitus, which seemed to be caused by mutation in the CREBBP gene. Immunohistochemistry of our patient's breast tissue showed cluster of differentiation 8 and programmed cell death ligand 1 positivity. CONCLUSIONS: Programmed cell death ligand 1 checkpoint therapy may be effective for recurrence of triple-negative breast cancer in a patient with autosomal dominant polycystic kidney disease and tuberous sclerosis complex.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Recidiva Local de Neoplasia/patologia , Rim Policístico Autossômico Dominante/fisiopatologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/patologia , Esclerose Tuberosa/fisiopatologia , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Diferenciação Celular/imunologia , Feminino , Humanos , Imunoterapia/métodos , Mastectomia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Linhagem , Rim Policístico Autossômico Dominante/imunologia , Rim Policístico Autossômico Dominante/terapia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Esclerose Tuberosa/imunologia , Esclerose Tuberosa/terapia
8.
BMC Res Notes ; 12(1): 705, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661025

RESUMO

OBJECTIVES: In an aging population, an increase in the number of elderly cancer patients with cognitive impairment is expected. The possible association between cancer and cognitive impairment is important to elucidate, because it can have a serious impact on quality of life. Here, we focused on glucose metabolism as a factor that links cancer and cognitive impairment. RESULTS: Thirteen subjects with solid cancers and cognitive impairment were recruited. As a control group, 14 subjects with cognitive impairment alone and 8 subjects with cancer alone were recruited. A Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and that of ß-cell function (HOMA-B) were used. In comparison with patients with solid cancer alone, those with cognitive impairment alone and those with both cancer and cognitive impairment had increased HOMA-IR values. Insulin resistance was increased in patients with cognitive impairment alone and those with both cognitive impairment and solid cancer than in patients without cognitive impairment; however, ß-cell function was not affected. The present data indicated that elderly cancer patients with high HOMA-IR score may be at a relatively high risk for developing cognitive impairment. Furthermore, early treatment to reduce insulin sensitivity may prevent cognitive impairment.


Assuntos
Disfunção Cognitiva/complicações , Resistência à Insulina/fisiologia , Neoplasias/complicações , Idoso , Idoso de 80 Anos ou mais , Glicemia/metabolismo , Feminino , Humanos , Masculino , Fatores de Risco
9.
BMC Med Genet ; 20(1): 67, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046708

RESUMO

BACKGROUND: Lynch syndrome, is an autosomal dominantly inherited disease that predisposes individuals to a high risk of colorectal cancers, and some mismatch-repair genes have been identified as causative genes. The purpose of this study was to investigate the genomic rearrangement of the gene in a family with Lynch syndrome followed for more than 45 years. CASE PRESENTATION: The family with Lynch syndrome is family N, who received colorectal cancer treatment for 45 years. The proband of family N had multiple colorectal and uterine cancers. Because the proband met the diagnostic Amsterdam criteria and was Microsatellite instability (MSI) - positive, we performed genetic testing several times. However, germline mutations in MLH1 and MSH2 genes were not found by long-distance PCR or RT-PCR/direct sequencing analysis within the 45-year follow-up. MLPA analysis showed that the genomes of the proband and proband's daughter contained a deletion from exon 4 through exon 19 in the MLH1 gene. Her son's son and her daughter's son were found to be carriers of the mutation. CONCLUSIONS: For carriers of mismatch-repair gene mutation among families with Lynch syndrome, the onset risk of associated cancers such as uterine cancer is particularly high, including colorectal cancer. The diagnosis of carriers among non-onset relatives is important for disease surveillance.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteína 1 Homóloga a MutL/genética , Feminino , Humanos , Masculino , Linhagem
10.
Nat Chem Biol ; 15(1): 18-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510193

RESUMO

Prostaglandin E receptor EP4, a G-protein-coupled receptor, is involved in disorders such as cancer and autoimmune disease. Here, we report the crystal structure of human EP4 in complex with its antagonist ONO-AE3-208 and an inhibitory antibody at 3.2 Å resolution. The structure reveals that the extracellular surface is occluded by the extracellular loops and that the antagonist lies at the interface with the lipid bilayer, proximal to the highly conserved Arg316 residue in the seventh transmembrane domain. Functional and docking studies demonstrate that the natural agonist PGE2 binds in a similar manner. This structural information also provides insight into the ligand entry pathway from the membrane bilayer to the EP4 binding pocket. Furthermore, the structure reveals that the antibody allosterically affects the ligand binding of EP4. These results should facilitate the design of new therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.


Assuntos
Receptores de Prostaglandina E Subtipo EP4/química , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Regulação Alostérica , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Caprilatos/química , Caprilatos/metabolismo , Cristalografia por Raios X , Epoprostenol/análogos & derivados , Epoprostenol/química , Epoprostenol/metabolismo , Humanos , Ligantes , Bicamadas Lipídicas , Simulação de Acoplamento Molecular , Naftalenos/química , Naftalenos/metabolismo , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Spodoptera/genética
11.
Protein Sci ; 27(6): 1038-1046, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575262

RESUMO

Tumor necrosis factor α (TNFα) is a proinflammatory cytokine, and elevated levels of TNFα in serum are associated with various autoimmune diseases, including rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), psoriasis, and systemic lupus erythaematosus. TNFα performs its pleiotropic functions by binding to two structurally distinct transmembrane receptors, TNF receptor (TNFR) 1 and TNFR2. Antibody-based therapeutic strategies that block excessive TNFα signaling have been shown to be effective in suppressing such harmful inflammatory conditions. Golimumab (Simponi®) is an FDA-approved fully human monoclonal antibody targeting TNFα that has been widely used for the treatment of RA, AS, and CD. However, the structural basis underlying the inhibitory action of golimumab remains unclear. Here, we report the crystal structure of the Fv fragment of golimumab in complex with TNFα at a resolution of 2.73 Å. The resolved structure reveals that golimumab binds to a distinct epitope on TNFα that does not overlap with the binding residues of TNFR2. Golimumab exerts its inhibitory effect by preventing binding of TNFR1 and TNFR2 to TNFα by steric hindrance. Golimumab does not induce conformational changes in TNFα that could affect receptor binding. This mode of action is specific to golimumab among the four anti-TNFα therapeutic antibodies currently approved for clinical use.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Modelos Moleculares , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/química , Anticorpos Monoclonais/metabolismo , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Humanos , Ligação Proteica , Conformação Proteica , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Sci Rep ; 6: 35297, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734966

RESUMO

Pembrolizumab is an FDA-approved therapeutic antibody that targets the programmed cell death-1 (PD-1) to block the immune checkpoint pathway for the treatment of various types of cancer. It receives remarkable attention due to the high degree of efficacy. Very recently, the crystal structure of the Fab fragment of pembrolizumab (PemFab) in complex with the extracellular domain of human PD-1 (PD-1ECD) was reported at a resolution of 2.9 Å. However, this relatively low-resolution structural data fails to provide sufficient information on interfacial water molecules at the binding interface that substantially contribute to affinity and specificity between the therapeutic antibody and target. Here, we present the independently determined crystal structure of the Fv fragment of pembrolizumab (PemFv) in complex with the PD-1ECD at a resolution of 2.15 Å. This high-resolution structure allows the accurate mapping of the interaction including water-mediated hydrogen bonds and provides, for the first time, a coherent explanation of PD-1 antagonism by pembrolizumab. Our structural data also provides new insights into the rational design of improved anti-PD-1 therapeutics.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antineoplásicos Imunológicos/química , Antígeno B7-H1/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos Imunológicos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Conformação Proteica
13.
Protein Sci ; 25(12): 2268-2276, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27595817

RESUMO

Fv antibody fragments have been used as co-crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large-scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL ) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH ) domain is expressed by a Gram-positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site-specific protease during the purification process to yield tag-free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT-based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA-approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies.


Assuntos
Brevibacillus/metabolismo , Anticorpos de Cadeia Única , Brevibacillus/genética , Cristalografia por Raios X/métodos , Humanos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 196-202, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419392

RESUMO

Crystal structures of FbpA, the periplasmic ferric ion-binding protein of an iron-uptake ABC transporter, from Thermus thermophilus HB8 (TtFbpA) have been solved in apo and ferric ion-bound forms at 1.8 and 1.7 Šresolution, respectively. The latter crystal structure shows that the bound ferric ion forms a novel six-coordinated complex with three tyrosine side chains, two bicarbonates and a water molecule in the metal-binding site. The results of gel-filtration chromatography and dynamic light scattering show that TtFbpA exists as a monomer in solution regardless of ferric ion binding and that TtFbpA adopts a more compact conformation in the ferric ion-bound state than in the apo state in solution.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Ferro/metabolismo , Periplasma/química , Thermus thermophilus/enzimologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Íons/química , Íons/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica , Thermus thermophilus/química , Thermus thermophilus/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-21795799

RESUMO

The histidine kinase domain of the cytoplasmic protein HksP4 from the hyperthermophilic bacterium Aquifex aeolicus VF5, located in the C-terminal half of the protein, was expressed, purified and crystallized. Diffraction-quality crystals were obtained in the presence of adenosine triphosphate (ATP) or adenosine 5'-(ß,γ-imido)triphosphate (AMPPNP) by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystals obtained in the presence of ATP and AMPPNP diffracted X-rays to 3.1 and 2.9 Šresolution, respectively, on BL-5A at Photon Factory (Ibaraki, Japan) and were found to belong to the same space group P2(1)2(1)2(1), with unit-cell parameters a=80.2, b=105.5, c=122.0 Šand a=81.5, b=105.5, c=130.9 Å, respectively. Their Matthews coefficients (VM=2.74 and 2.51 Å3 Da(-1), respectively) indicated that both crystals contained four protein molecules per asymmetric unit.


Assuntos
Bactérias/enzimologia , Proteínas Quinases/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Histidina Quinase , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Biochem Biophys Res Commun ; 411(4): 738-44, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21782787

RESUMO

The solution structure of an insecticidal toxin LaIT1, a 36-residue peptide with a unique amino-acid sequence and two disulfide bonds, isolated from the venom of the scorpion Liocheles australasiae was determined by heteronuclear NMR spectroscopy. Structural similarity search showed that LaIT1 exhibits an inhibitory cystine knot (ICK)-like fold, which usually contains three or more disulfide bonds. Mutational analysis has revealed that two Arg residues of LaIT1, Arg(13) and Arg(15), play significant roles in insecticidal activity.


Assuntos
Inseticidas/química , Venenos de Escorpião/química , Escorpiões/metabolismo , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Estrutura Terciária de Proteína , Venenos de Escorpião/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA