Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 92(1): 190-198, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465876

RESUMO

BACKGROUND: Inflammatory processes are key drivers of bronchopulmonary dysplasia (BPD), a chronic lung disease in preterm infants. In a large sample, we verify previously reported associations of genetic variants of immunology-related genes with BPD. METHODS: Preterm infants with a gestational age ≤32 weeks from PROGRESS and the German Neonatal Network (GNN) were included. Through a consensus case/control definition, 278 BPD cases and 670 controls were identified. We identified 49 immunity-related genes and 55 single-nucleotide polymorphisms (SNPs) previously associated with BPD through a comprehensive literature survey. Additionally, a quantitative genetic association analysis regarding oxygen supplements, mechanical ventilation, and continuous positive air pressure (CPAP) was performed. RESULTS: Five candidate SNPs were nominally associated with BPD-related phenotypes with effect directions not conflicting the original studies: rs11265269-CRP, rs1427793-NUAK1, rs2229569-SELL, rs1883617-VNN2, and rs4148913-CHST3. Four of these genes are involved in cell adhesion. Extending our analysis to all well-imputed SNPs of all candidate genes, the strongest association was rs45538638-ABCA3 with CPAP (p = 4.9 × 10-7, FDR = 0.004), an ABC transporter involved in surfactant formation. CONCLUSIONS: Most of the previously reported associations could not be replicated. We found additional support for SNPs in CRP, NUAK1, SELL, VNN2, and ABCA3. Larger studies and meta-analyses are required to corroborate these findings. IMPACT: Larger cohort for improved statistical power to detect genetic associations with bronchopulmonary dysplasia (BPD). Most of the previously reported genetic associations with BPD could not be replicated in this larger study. Among investigated immunological relevant candidate genes, additional support was found for variants in genes CRP, NUAK1, SELL, VNN2, and CHST3, four of them related to cell adhesion. rs45538638 is a novel candidate SNP in reported candidate gene ABC-transporter ABCA3. Results help to prioritize molecular candidate pathomechanisms in follow-up studies.


Assuntos
Displasia Broncopulmonar , Surfactantes Pulmonares , Transportadores de Cassetes de Ligação de ATP/genética , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/terapia , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Polimorfismo de Nucleotídeo Único , Proteínas Quinases , Proteínas Repressoras/genética
2.
Kidney Int ; 99(4): 926-939, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33137338

RESUMO

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Proteínas Quinases Ativadas por AMP , Creatinina , Taxa de Filtração Glomerular/genética , Humanos , Isomerases de Dissulfetos de Proteínas , Reino Unido
3.
Nat Genet ; 51(10): 1459-1474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578528

RESUMO

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.


Assuntos
Doenças Cardiovasculares/sangue , Marcadores Genéticos , Gota/sangue , Doenças Metabólicas/sangue , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Ácido Úrico/sangue , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudos de Coortes , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gota/epidemiologia , Gota/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Proteínas de Neoplasias/genética , Especificidade de Órgãos
4.
J Clin Endocrinol Metab ; 104(11): 5008-5023, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31169883

RESUMO

CONTEXT: Steroid hormones are important regulators of physiological processes in humans and are under genetic control. A link to coronary artery disease (CAD) is supposed. OBJECTIVE: Our main objective was to identify genetic loci influencing steroid hormone levels. As a secondary aim, we searched for causal effects of steroid hormones on CAD. DESIGN: We conducted genome-wide meta-association studies for eight steroid hormones: cortisol, dehydroepiandrosterone sulfate (DHEAS), estradiol, and testosterone in two independent cohorts (LIFE-Adult, LIFE-Heart, maximum n = 7667), and progesterone, 17-hydroxyprogesterone, androstenedione, and aldosterone in LIFE-Heart only (maximum n = 2070). All genome-wide significant loci were tested for sex interactions. Furthermore, we tested whether previously reported CAD single-nucleotide polymorphisms were associated with our steroid hormone panel and investigated causal links between hormone levels and CAD status using Mendelian randomization (MR) approaches. RESULTS: We discovered 15 novel associated loci for 17-hydroxyprogesterone, progesterone, DHEAS, cortisol, androstenedione, and estradiol. Five of these loci relate to genes directly involved in steroid metabolism, that is, CYP21A1, CYP11B1, CYP17A1, STS, and HSD17B12, almost completing the set of steroidogenic enzymes with genetic associations. Sexual dimorphisms were found for seven of the novel loci. Other loci correspond, for example, to the WNT4/ß-catenin pathway. MR revealed that cortisol, androstenedione, 17-hydroxyprogesterone, and DHEA-S had causal effects on CAD. We also observed enrichment of cortisol and testosterone associations among known CAD hits. CONCLUSION: Our study greatly improves insight into genetic regulation of steroid hormones and their dependency on sex. These results could serve as a basis for analyzing sexual dimorphism in other complex diseases.


Assuntos
Doença da Artéria Coronariana/genética , Esteroides/biossíntese , Adulto , Idoso , Estudos de Coortes , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/epidemiologia , Feminino , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais , Transdução de Sinais/genética
5.
PLoS Comput Biol ; 5(7): e1000447, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19629161

RESUMO

The kinetics of label uptake and dilution in dividing stem cells, e.g., using Bromodeoxyuridine (BrdU) as a labeling substance, are a common way to assess the cellular turnover of all hematopoietic stem cells (HSCs) in vivo. The assumption that HSCs form a homogeneous population of cells which regularly undergo cell division has recently been challenged by new experimental results. For a consistent functional explanation of heterogeneity among HSCs, we propose a concept in which stem cells flexibly and reversibly adapt their cycling state according to systemic needs. Applying a mathematical model analysis, we demonstrate that different experimentally observed label dilution kinetics are consistently explained by the proposed model. The dynamically stabilized equilibrium between quiescent and activated cells leads to a biphasic label dilution kinetic in which an initial and pronounced decline of label retaining cells is attributed to faster turnover of activated cells, whereas a secondary, decelerated decline results from the slow turnover of quiescent cells. These results, which support our previous model prediction of a reversible activation/deactivation of HSCs, are also consistent with recent findings that use GFP-conjugated histones as a label instead of BrdU. Based on our findings we interpret HSC organization as an adaptive and regulated process in which the slow activation of quiescent cells and their possible return into quiescence after division are sufficient to explain the simultaneous occurrence of self-renewal and differentiation. Furthermore, we suggest an experimental strategy which is suited to demonstrate that the repopulation ability among the population of label retaining cells changes during the course of dilution.


Assuntos
Células-Tronco Hematopoéticas/citologia , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Bromodesoxiuridina/metabolismo , Comunicação Celular/fisiologia , Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Simulação por Computador , Humanos , Análise dos Mínimos Quadrados , Fase de Repouso do Ciclo Celular/fisiologia
6.
Blood ; 112(13): 4874-83, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18809760

RESUMO

Hematopoietic stem cells (HSCs) show pronounced heterogeneity in self-renewal and differentiation behavior, which is reflected in their repopulation kinetics. Here, a single-cell-based mathematical model of HSC organization is used to examine the basis of HSC heterogeneity. Our modeling results, which are based on the analysis of limiting dilution competitive repopulation experiments in mice, demonstrate that small quantitative but clonally fixed differences of cellular properties are necessary and sufficient to account for the observed functional heterogeneity. The model predicts, and experimental data validate, that competitive pressures will amplify small clonal differences into large changes in the number of differentiated progeny. We further predict that the repertoire of HSC clones will evolve over time. Last, our results suggest that larger differences in cellular properties have to be assumed to account for genetically determined differences in HSC behavior as observed in different inbred mice strains. The model provides comprehensive systemic and quantitative insights into the clonal heterogeneity among HSCs with potential applications in predicting the behavior of malignant and/or genetically modified cells.


Assuntos
Células-Tronco Hematopoéticas/citologia , Modelos Biológicos , Animais , Diferenciação Celular , Proliferação de Células , Células Clonais/citologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA