Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 888, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644231

RESUMO

The CCT/TRiC chaperonin is found in the cytosol of all eukaryotic cells and assists protein folding in an ATP-dependent manner. The heterozygous double mutation T400P and R516H in subunit CCT2 is known to cause Leber congenital amaurosis (LCA), a hereditary congenital retinopathy. This double mutation also renders the function of subunit CCT2, when it is outside of the CCT/TRiC complex, to be defective in promoting autophagy. Here, we show using steady-state and transient kinetic analysis that the corresponding double mutation in subunit CCT2 from Saccharomyces cerevisiae reduces the off-rate of ADP during ATP hydrolysis by CCT/TRiC. We also report that the ATPase activity of CCT/TRiC is stimulated by a non-folded substrate. Our results suggest that the closed state of CCT/TRiC is stabilized by the double mutation owing to the slower off-rate of ADP, thereby impeding the exit of CCT2 from the complex that is required for its function in autophagy.


Assuntos
Amaurose Congênita de Leber , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Amaurose Congênita de Leber/genética , Cinética , Mutação , Trifosfato de Adenosina , Chaperonina com TCP-1
2.
J Phys Chem Lett ; 14(29): 6513-6521, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37440608

RESUMO

The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.


Assuntos
Trifosfato de Adenosina , Transferência Ressonante de Energia de Fluorescência , Trifosfato de Adenosina/metabolismo , Conformação Proteica , Escherichia coli/metabolismo , Dobramento de Proteína , Chaperonina 60/metabolismo , Ligação Proteica
3.
J Bacteriol ; 204(8): e0017922, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862728

RESUMO

The NtrC family of AAA+ proteins are bacterial transcriptional regulators that control σ54-dependent RNA polymerase transcription under certain stressful conditions. MopR, which is a member of this family, is responsive to phenol and stimulates its degradation. Biochemical studies to understand the role of ATP and phenol in oligomerization and allosteric regulation, which are described here, show that MopR undergoes concentration-dependent oligomerization in which dimers assemble into functional hexamers. The oligomerization occurs in a nucleation-dependent manner with a tetrameric intermediate. Additionally, phenol binding is shown to be responsible for shifting MopR's equilibrium from a repressed state (high affinity toward ATP) to a functionally active, derepressed state with low-affinity for ATP. Based on these findings, we propose a model for allosteric regulation of MopR. IMPORTANCE The NtrC family of bacterial transcriptional regulators are enzymes with a modular architecture that harbor a signal sensing domain followed by a AAA+ domain. MopR, a NtrC family member, responds to phenol and activates phenol adaptation pathways that are transcribed by σ54-dependent RNA polymerases. Our results show that for efficient ATP hydrolysis, MopR assembles as functional hexamers and that this activity of MopR is regulated by its effector (phenol), ATP, and protein concentration. Our findings, and the kinetic methods we employ, should be useful in dissecting the allosteric mechanisms of other AAA+ proteins, in general, and NtrC family members in particular.


Assuntos
Proteínas de Ligação a DNA , Transativadores , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Hidrólise , Fenol , Fenóis , Transativadores/genética , Fatores de Transcrição/metabolismo
4.
Annu Rev Biophys ; 51: 115-133, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34982571

RESUMO

The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact.


Assuntos
Chaperoninas , Dobramento de Proteína , Chaperoninas/química , Chaperoninas/metabolismo , Escherichia coli/metabolismo , Humanos
5.
Biophys J ; 117(10): 1915-1921, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31699334

RESUMO

A fundamental problem that has hindered the use of the classic Monod-Wyman-Changuex (MWC) allosteric model since its introduction is that it has been difficult to determine the values of its parameters in a reliable manner because they are correlated with each other and sensitive to the data-fitting method. Consequently, experimental data are often fitted to the Hill equation, which provides a measure of cooperativity but no insights into its origin. In this work, we derived a general relationship between the value of the Hill coefficient and the parameters of the MWC model. It is shown that this relationship can be used to select the best estimate of the true combination of the MWC parameter values from all the possible ones found to fit the data. Here, this approach was applied to fits to the MWC model of curves of the fraction of GroEL molecules in the high-affinity (R) state for ATP as a function of ATP concentration. Such curves were collected at different temperatures, thereby providing insight into the hydrophobic effect associated with the ATP-promoted allosteric switch of GroEL. More generally, the relationship derived here should facilitate future thermodynamic analysis of other MWC-type allosteric systems.


Assuntos
Chaperonina 60/metabolismo , Modelos Biológicos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cinética , Temperatura
6.
Toxicol Appl Pharmacol ; 384: 114782, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655077

RESUMO

Bleomycin is an anticancer antibiotic effective against a range of human malignancies. Yet its usefulness is limited by serious side effects. In this study, we converted bleomycin into a prodrug by covalently linking 2-sulfo, 9 fluorenylmethoxycarbonyl (FMS) to the primary amino side chain of bleomycin. FMS-bleomycin lost its efficacy to bind transition metal ions and therefore was converted into an inactive derivative. Upon incubation in vitro under physiological conditions, the FMS-moiety undergoes spontaneous hydrolysis, generating native bleomycin possessing full anti-bacterial potency. FMS hydrolysis and reactivation takes place with a t1/2 value of 17 ±â€¯1 h. In silico simulation predicts a narrow therapeutic window in human patients of seven hours, starting 40 min after administration. In mice, close agreement was obtained between the experimental and the simulated pharmacokinetic profiles for FMS-bleomycin. FMS-bleomycin is thus shown to be a classical prodrug: it is inactive at the time of administration and the non-modified (active) bleomycin is released with a desirable pharmacokinetic profile following administration, suggesting it may have therapeutic value in the clinic.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Bleomicina/farmacocinética , Fluorenos/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Bleomicina/administração & dosagem , Bleomicina/química , Cátions Bivalentes/química , Simulação por Computador , Escherichia coli/efeitos dos fármacos , Hidrólise , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Modelos Biológicos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Zinco/química
7.
PLoS One ; 13(2): e0192619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29438383

RESUMO

The GroE chaperonin system, which comprises GroEL and GroES, assists protein folding in vivo and in vitro. It is conserved in all prokaryotes except in most, but not all, members of the class of mollicutes. In Escherichia coli, about 60 proteins were found to be obligatory clients of the GroE system. Here, we describe the properties of the homologs of these GroE clients in mollicutes and the evolution of chaperonins in this class of bacteria. Comparing the properties of these homologs in mollicutes with and without chaperonins enabled us to search for features correlated with the presence of GroE. Interestingly, no sequence-based features of proteins such as average length, amino acid composition and predicted folding/disorder propensity were found to be affected by the absence of GroE. Other properties such as genome size and number of proteins were also found to not differ between mollicute species with and without GroE. Our data suggest that two clades of mollicutes re-acquired the GroE system, thereby supporting the view that gaining the system occurred polyphyletically and not monophyletically, as previously debated. Our data also suggest that there might have been three isolated cases of lateral gene transfer from specific bacterial sources. Taken together, our data indicate that loss of GroE does not involve crossing a high evolutionary barrier and can be compensated for by a small number of changes within the few dozen client proteins.


Assuntos
Chaperoninas/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Proteínas de Choque Térmico/genética , Tenericutes/genética , Códon , Filogenia
8.
Proc Natl Acad Sci U S A ; 114(20): 5189-5194, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461478

RESUMO

Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ?conformational waves." They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively.


Assuntos
Regulação Alostérica/fisiologia , Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Chaperoninas/metabolismo , Hidrólise , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Mol Biol ; 428(22): 4520-4527, 2016 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-27686496

RESUMO

The chaperonin-containing t-complex polypeptide 1 (CCT, also known as TRiC) assists protein folding in an ATP-dependent manner. CCT/TRiC was mixed rapidly with different concentrations of ATP, and the amount of phosphate formed upon ATP hydrolysis was measured as a function of time using the coumarin-labeled phosphate-binding protein method. Two burst phases were observed, followed by a lag phase and then a linear steady-state phase of ATP hydrolysis. The phases were assigned by (i) determining their dependence on ATP and K+ concentrations and (ii) by measuring their sensitivity to the mutation Gly345→Asp in subunit CCT4, which decreases cooperativity in ATP binding. The values of the observed rate constants corresponding to the burst phases are found to decrease with increasing ATP and K+ concentrations, thereby indicating that the apo state of CCT/TRiC is in equilibrium between several conformations and that "conformational selection" by ATP takes place before hydrolysis. The amplitude of the lag phase, which follows, decreases with increasing ATP concentrations, thus indicating that it reflects a transition between states with low affinity for ATP and a state with high affinity for ATP that is predominant under steady-state conditions. A kinetic model based on the data is suggested, in which CCT/TRiC is in equilibrium between a relatively large number of states that are distinguished kinetically, in agreement with its proposed sequential allosteric mechanism.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina com TCP-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Chaperonina com TCP-1/genética , Hidrólise , Cinética , Potássio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Chem Rev ; 116(11): 6588-606, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-26726755

RESUMO

Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.


Assuntos
Chaperoninas/metabolismo , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperoninas/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Potássio/química , Potássio/metabolismo , Conformação Proteica , Dobramento de Proteína
11.
Nat Commun ; 6: 8624, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468675

RESUMO

The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Protozoários/metabolismo , Transporte de Elétrons , Conformação Proteica
12.
J Am Chem Soc ; 136(26): 9396-403, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24888581

RESUMO

ATP-dependent binding of the chaperonin GroEL to its cofactor GroES forms a cavity in which encapsulated substrate proteins can fold in isolation from bulk solution. It has been suggested that folding in the cavity may differ from that in bulk solution owing to steric confinement, interactions with the cavity walls, and differences between the properties of cavity-confined and bulk water. However, experimental data regarding the cavity-confined water are lacking. Here, we report measurements of water density and diffusion dynamics in the vicinity of a spin label attached to a cysteine in the Tyr71 → Cys GroES mutant obtained using two magnetic resonance techniques: electron-spin echo envelope modulation and Overhauser dynamic nuclear polarization. Residue 71 in GroES is fully exposed to bulk water in free GroES and to confined water within the cavity of the GroEL-GroES complex. Our data show that water density and translational dynamics in the vicinity of the label do not change upon complex formation, thus indicating that bulk water-exposed and cavity-confined GroES surface water share similar properties. Interestingly, the diffusion dynamics of water near the GroES surface are found to be unusually fast relative to other protein surfaces studied. The implications of these findings for chaperonin-assisted folding mechanisms are discussed.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Sequência de Bases , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Marcadores de Spin , Água/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(18): 7235-9, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589876

RESUMO

The activity of many proteins, including metabolic enzymes, molecular machines, and ion channels, is often regulated by conformational changes that are induced or stabilized by ligand binding. In cases of multimeric proteins, such allosteric regulation has often been described by the concerted Monod-Wyman-Changeux and sequential Koshland-Némethy-Filmer classic models of cooperativity. Despite the important functional implications of the mechanism of cooperativity, it has been impossible in many cases to distinguish between these various allosteric models using ensemble measurements of ligand binding in bulk protein solutions. Here, we demonstrate that structural MS offers a way to break this impasse by providing the full distribution of ligand-bound states of a protein complex. Given this distribution, it is possible to determine all the binding constants of a ligand to a highly multimeric cooperative system, and thereby infer its allosteric mechanism. Our approach to the dissection of allosteric mechanisms relies on advances in MS--which provide the required resolution of ligand-bound states--and in data analysis. We validated our approach using the well-characterized Escherichia coli chaperone GroEL, a double-heptameric ring containing 14 ATP binding sites, which has become a paradigm for molecular machines. The values of the 14 binding constants of ATP to GroEL were determined, and the ATP-loading pathway of the chaperone was characterized. The methodology and analyses presented here are directly applicable to numerous other cooperative systems and are therefore expected to promote further research on allosteric systems.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Espectrometria de Massas/métodos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 109(46): 18833-8, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112166

RESUMO

The eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) is an ATP-fueled machine that assists protein folding. It consists of two back-to-back stacked rings formed by eight different subunits that are arranged in a fixed permutation. The different subunits of CCT are believed to possess unique substrate binding specificities that are still mostly unknown. Here, we used high-throughput microscopy analysis of yeast cells to determine changes in protein levels and localization as a result of a Glu to Asp mutation in the ATP binding site of subunits 3 (CCT3) or 6 (CCT6). The mutation in subunit CCT3 was found to induce cytoplasmic foci termed P-bodies where mRNAs, which are not translated, accumulate and can be degraded. Analysis of the changes in protein levels and structural modeling indicate that P-body formation in cells with the mutation in CCT3 is linked to the specific interaction of this subunit with Gln/Asn-rich segments that are enriched in many P-body proteins. An in vitro gel-shift analysis was used to show that the mutation in subunit CCT3 interferes with the ability of CCT to bind a Gln/Asn-rich protein aggregate. More generally, the strategy used in this work can be used to unravel the substrate specificities of other chaperone systems.


Assuntos
Chaperonina com TCP-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Chaperonina com TCP-1/genética , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Mutação de Sentido Incorreto , Estabilidade Proteica , Transporte Proteico/fisiologia , Estabilidade de RNA/fisiologia , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Biophys J ; 99(5): 1645-9, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20816078

RESUMO

There is often an interest in knowing, for a given ligand concentration, how many protein molecules have one, two, three, etc. ligands bound in a specific manner. This is a question that cannot be addressed using conventional ensemble techniques. Here, a mathematical method is presented for separating specific from nonspecific binding in nonensemble studies. The method provides a way to determine the distribution of specific binding stoichiometries at any ligand concentration when using nonensemble (e.g., single-molecule) methods. The applicability of the method is demonstrated for ADP binding to creatine kinase using mass spectroscopy data. A major advantage of our method, which can be applied to any protein-ligand system, is that no previous information regarding the mechanism of ligand interaction is required.


Assuntos
Espectrometria de Massas , Difosfato de Adenosina/metabolismo , Animais , Creatina Quinase/metabolismo , Ligantes , Modelos Biológicos , Ligação Proteica , Coelhos , Especificidade por Substrato
16.
J Mol Biol ; 401(3): 532-43, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20600117

RESUMO

The eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins, and other proteins in an ATP-dependent manner. Here, we tested the significance of the hetero-oligomeric nature of CCT in its function by introducing, in each of the eight subunits in turn, an identical mutation at a position that is conserved in all the subunits and is involved in ATP hydrolysis, in order to establish the extent of 'individuality' of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, Saccharomyces cerevisiae yeast cells with the mutation in subunit CCT2 display heat sensitivity and cold sensitivity for growth, have an excess of actin patches, and are the only strain here generated that is pseudo-diploid. By contrast, cells with the mutation in subunit CCT7 are the only ones to accumulate juxtanuclear protein aggregates that may reflect an impaired stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks, including ribosome biogenesis and TOR2, that help to explain the phenotypic variability observed.


Assuntos
Chaperonina com TCP-1/genética , Mutação , Actinas , Adaptação Fisiológica/genética , Proteínas de Ciclo Celular , Chaperonina com TCP-1/fisiologia , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosfatidilinositol 3-Quinases , Subunidades Proteicas/genética , Ribossomos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
17.
Proc Natl Acad Sci U S A ; 107(14): 6270-4, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308583

RESUMO

The molecular chaperone GroEL exists in at least two allosteric states, T and R, that interconvert in an ATP-controlled manner. Thermodynamic analysis suggests that the T-state population becomes negligible with increasing ATP concentrations, in conflict with the requirement for conformational cycling, which is essential for the operation of molecular machines. To solve this conundrum, we performed fluorescence correlation spectroscopy on the single-ring version of GroEL, using a fluorescent switch recently built into its structure, which turns "on," i.e., increases its fluorescence dramatically, when ATP is added. A series of correlation functions was measured as a function of ATP concentration and analyzed using singular-value decomposition. The analysis assigned the signal to two states whose dynamics clearly differ. Surprisingly, even at ATP saturation, approximately 50% of the molecules still populate the T state at any instance of time, indicating constant out-of-equilibrium cycling between T and R. Only upon addition of the cochaperonin GroES does the T-state population vanish. Our results suggest a model in which the T/R ratio is controlled by the rate of ADP release after hydrolysis, which can be determined accordingly.


Assuntos
Trifosfato de Adenosina/química , Chaperonina 60/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 60/metabolismo , Dinâmica não Linear , Conformação Proteica , Espectrometria de Fluorescência
18.
J Mol Biol ; 380(4): 717-25, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18556021

RESUMO

The chaperonin GroEL assists protein folding by undergoing ATP-induced conformational changes that are concerted within each of its two back-to-back stacked rings. Here we examined whether concerted allosteric switching gives rise to all-or-none release and folding of domains in a chimeric fluorescent protein substrate, CyPet-YPet. Using this substrate, it was possible to determine the folding yield of each domain from its intrinsic fluorescence and that of the entire chimera by measuring Förster resonance energy transfer between the two domains. Hence, it was possible to determine whether release of one domain is accompanied by release of the other domain (concerted mechanism), or whether their release is not coupled. Our results show that the chimera's release tends to be concerted when folding is assisted by a wild-type GroEL variant, but not when assisted by the F44W/D155A mutant that undergoes a sequential allosteric switch. A connection between the allosteric mechanism of this molecular machine and its biological function in assisting folding is thus established.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/química , Regulação Alostérica , Chaperonina 60/genética , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
19.
J Mol Biol ; 377(2): 469-77, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18272176

RESUMO

Saccharomyces cerevisiae yeast cells containing the chaperonin CCT (chaperonin-containing t-complex polypeptide 1 (TCP-1)) with the G345D mutation in subunit CCT4 (anc2-1) are temperature-sensitive for growth and display defects in organization of actin structure, budding and cell shape. In this first structure-function analysis of CCT, we show that this mutation abolishes both intra- and inter-ring cooperativity in ATP binding by CCT. The finding that a single mutation in only one subunit in each CCT ring has such drastic effects highlights the importance of allostery for its in vivo function. These results, together with other kinetic data for wild-type CCT reported in this study, provide support for the sequential model for ATP-dependent allosteric transitions in CCT.


Assuntos
Trifosfato de Adenosina/farmacologia , Chaperoninas/química , Chaperoninas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Temperatura , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Animais , Bovinos , Chaperonina com TCP-1 , Chaperoninas/genética , Glicina/genética , Glicina/metabolismo , Cinética , Mutação/genética , Fenótipo , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Proc Natl Acad Sci U S A ; 104(9): 3119-24, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17360617

RESUMO

The double-ring chaperonin GroEL mediates protein folding, in conjunction with its helper protein GroES, by undergoing ATP-induced conformational changes that are concerted within each heptameric ring. Here we have examined whether the concerted nature of these transitions is responsible for protein substrate release in an all-or-none manner. Two chimeric substrates were designed, each with two different reporter activities that were recovered after denaturation in GroES-dependent and independent fashions, respectively. The refolding of the chimeras was monitored in the presence of GroEL variants that undergo ATP-induced intraring conformational changes that are either sequential (F44W/D155A) or concerted (F44W). Our results show that release of a protein substrate from GroEL in a domain-by-domain fashion is favored when the intraring allosteric transitions of GroEL are sequential and not concerted.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 60/química , Modelos Moleculares , Dobramento de Proteína , Regulação Alostérica , Chaperonina 60/metabolismo , Cromatografia em Gel , Escherichia coli , Proteínas de Fluorescência Verde , Oligonucleotídeos , Proteínas Recombinantes de Fusão/metabolismo , Tiossulfato Sulfurtransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA