Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Biochemistry ; 58(16): 2152-2159, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30810306

RESUMO

The N-methyltransferase TylM1 from Streptomyces fradiae catalyzes the final step in the biosynthesis of the deoxyamino sugar mycaminose, a substituent of the antibiotic tylosin. The high-resolution crystal structure of TylM1 bound to the methyl donor S-adenosylmethionine (AdoMet) illustrates a network of carbon-oxygen (CH···O) hydrogen bonds between the substrate's sulfonium cation and residues within the active site. These interactions include hydrogen bonds between the methyl and methylene groups of the AdoMet sulfonium cation and the hydroxyl groups of Tyr14 and Ser120 in the enzyme. To examine the functions of these interactions, we generated Tyr14 to phenylalanine (Y14F) and Ser120 to alanine (S120A) mutations to selectively ablate the CH···O hydrogen bonding to AdoMet. The TylM1 S120A mutant exhibited a modest decrease in its catalytic efficiency relative to that of the wild type (WT) enzyme, whereas the Y14F mutation resulted in an approximately 30-fold decrease in catalytic efficiency. In contrast, site-specific substitution of Tyr14 by the noncanonical amino acid p-aminophenylalanine partially restored activity comparable to that of the WT enzyme. Correlatively, quantum mechanical calculations of the activation barrier energies of WT TylM1 and the Tyr14 mutants suggest that substitutions that abrogate hydrogen bonding with the AdoMet methyl group impair methyl transfer. Together, these results offer insights into roles of CH···O hydrogen bonding in modulating the catalytic efficiency of TylM1.


Assuntos
Proteínas de Bactérias/química , Ligação de Hidrogênio , Metiltransferases/química , S-Adenosilmetionina/química , Compostos de Sulfônio/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono/química , Carbono/metabolismo , Cristalografia por Raios X , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/metabolismo , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Domínios Proteicos , S-Adenosilmetionina/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato , Compostos de Sulfônio/metabolismo
3.
Curr Opin Struct Biol ; 48: 1-5, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28734135

RESUMO

Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Proteínas Periplásmicas/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribonucleases/química , Ribonucleases/genética , Ribonucleases/metabolismo , Termodinâmica
4.
Nat Commun ; 7: 10357, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26787517

RESUMO

Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína
5.
ACS Chem Biol ; 11(3): 748-54, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26713889

RESUMO

Recent studies have demonstrated that carbon-oxygen (CH···O) hydrogen bonds have important roles in S-adenosylmethionine (AdoMet) recognition and catalysis in methyltransferases. Here, we investigate noncovalent interactions that occur between the AdoMet sulfur cation and oxygen atoms in methyltransferase active sites. These interactions represent sulfur-oxygen (S···O) chalcogen bonds in which the oxygen atom donates a lone pair of electrons to the σ antibonding orbital of the AdoMet sulfur atom. Structural, biochemical, and computational analyses of an asparagine mutation in the lysine methyltransferase SET7/9 that abolishes AdoMet S···O chalcogen bonding reveal that this interaction enhances substrate binding affinity relative to the product S-adenosylhomocysteine. Corroborative quantum mechanical calculations demonstrate that sulfonium systems form strong S···O chalcogen bonds relative to their neutral thioether counterparts. An inspection of high-resolution crystal structures reveals the presence of AdoMet S···O chalcogen bonding in different classes of methyltransferases, illustrating that these interactions are not limited to SET domain methyltransferases. Together, these results demonstrate that S···O chalcogen bonds contribute to AdoMet recognition and can enable methyltransferases to distinguish between substrate and product.


Assuntos
Chalconas/química , Histona-Lisina N-Metiltransferase/metabolismo , Oxigênio/química , S-Adenosilmetionina/metabolismo , Enxofre/química , Sítios de Ligação , Regulação Enzimológica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Mutação , Conformação Proteica , S-Adenosilmetionina/química
6.
ACS Chem Biol ; 9(8): 1692-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914947

RESUMO

Recent studies have demonstrated that the active sites of S-adenosylmethionine (AdoMet)-dependent methyltransferases form strong carbon-oxygen (CH···O) hydrogen bonds with the substrate's sulfonium group that are important in AdoMet binding and catalysis. To probe these interactions, we substituted the noncanonical amino acid p-aminophenylalanine (pAF) for the active site tyrosine in the lysine methyltransferase SET7/9, which forms multiple CH···O hydrogen bonds to AdoMet and is invariant in SET domain enzymes. Using quantum chemistry calculations to predict the mutation's effects, coupled with biochemical and structural studies, we observed that pAF forms a strong CH···N hydrogen bond to AdoMet that is offset by an energetically unfavorable amine group rotamer within the SET7/9 active site that hinders AdoMet binding and activity. Together, these results illustrate that the invariant tyrosine in SET domain methyltransferases functions as an essential hydrogen bonding hub and cannot be readily substituted by residues bearing other hydrogen bond acceptors.


Assuntos
Aminoácidos/química , Metiltransferases/química , Catálise , Ligação de Hidrogênio , Mutagênese , Teoria Quântica , S-Adenosilmetionina/química
7.
J Am Chem Soc ; 135(41): 15536-48, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24093804

RESUMO

S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.


Assuntos
Carbono/metabolismo , Evolução Molecular , Metiltransferases/metabolismo , Oxigênio/metabolismo , S-Adenosilmetionina/metabolismo , Carbono/química , Ligação de Hidrogênio , Metiltransferases/química , Estrutura Molecular , Oxigênio/química , Teoria Quântica , S-Adenosilmetionina/química
8.
J Biol Chem ; 286(21): 18658-63, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454678

RESUMO

SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.


Assuntos
Carbono/química , Histona-Lisina N-Metiltransferase/química , Oxigênio/química , S-Adenosilmetionina/química , Carbono/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Ligação de Hidrogênio , Oxigênio/metabolismo , Estrutura Terciária de Proteína , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade
9.
Am J Physiol Gastrointest Liver Physiol ; 292(5): G1323-36, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17218473

RESUMO

Nitric oxide (.NO) generation from conversion of l-arginine to citrulline by nitric oxide synthase isoforms plays a critical role in vascular homeostasis. Loss of .NO is linked to vascular pathophysiology and is decreased in chronically inflamed gut blood vessels in inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis). Mechanisms underlying decreased .NO production in IBD gut microvessels are not fully characterized. Loss of .NO generation may result from increased arginase (AR) activity, which enzymatically competes with nitric oxide synthase for the common substrate l-arginine. We characterized AR expression in IBD microvessels and endothelial cells and its contribution to decreased .NO production. AR expression was assessed in resected gut tissues and human intestinal microvascular endothelial cells (HIMEC). AR expression significantly increased in both ulcerative colitis and Crohn's disease microvessels and submucosal tissues compared with normal. TNF-alpha/lipopolysaccharide increased AR activity, mRNA and protein expression in HIMEC in a time-dependent fashion. RhoA/ROCK pathway, a negative regulator of .NO generation in endothelial cells, was examined. The RhoA inhibitor C3 exoenzyme and the ROCK inhibitor Y-27632 both attenuated TNF-alpha/lipopolysaccharide-induced MAPK activation and blocked AR expression in HIMEC. A significantly higher AR activity and increased RhoA activity were observed in IBD submucosal tissues surrounding microvessels compared with normal control gut tissue. Functionally, inhibition of AR activity decreased leukocyte binding to HIMEC in an adhesion assay. Loss of .NO production in IBD microvessels is linked to enhanced levels of AR in intestinal endothelial cells exposed to chronic inflammation in vivo.


Assuntos
Arginase/metabolismo , Endotélio/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/enzimologia , ADP Ribose Transferases/farmacologia , Amidas/farmacologia , Arginina/farmacologia , Toxinas Botulínicas/farmacologia , Moléculas de Adesão Celular/fisiologia , Doença de Crohn/fisiopatologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Óxido Nítrico/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Valina/farmacologia , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/fisiologia
10.
Am J Physiol Cell Physiol ; 291(5): C931-45, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16790501

RESUMO

The heat shock response maintains cellular homeostasis following sublethal injury. Heat shock proteins (Hsps) are induced by thermal, oxyradical, and inflammatory stress, and they chaperone denatured intracellular proteins. Hsps also chaperone signal transduction proteins, modulating signaling cascades during repeated stress. Gastroesophageal reflux disease (GERD) affects 7% of the US population, and it is linked to prolonged esophageal acid exposure. GERD is characterized by enhanced and selective leukocyte recruitment from esophageal microvasculature, implying activation of microvascular endothelium. We investigated whether phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK regulate Hsp induction in primary cultures of human esophageal microvascular endothelial cells (HEMEC) in response to acid exposure (pH 4.5). Inhibitors of signaling pathways were used to define the contribution of PI3K/Akt and MAPKs in the heat shock response and following acid exposure. Acid significantly enhanced phosphorylation of Akt and MAPKs in HEMEC as well as inducing Hsp27 and Hsp70. The PI3K inhibitor LY-294002, and Akt small interfering RNA inhibited Akt activation and Hsp70 expression in HEMEC. The p38 MAPK inhibitor (SB-203580) and p38 MAPK siRNA blocked Hsp27 and Hsp70 mRNA induction, suggesting a role for MAPKs in the HEMEC heat shock response. Thus acidic pH exposure protects HEMEC through induction of Hsps and activation of MAPK and PI3 kinase pathway. Acidic exposure increased HEMEC expression of VCAM-1 protein, but not ICAM-1, which may contribute to selective leukocyte (i.e., eosinophil) recruitment in esophagitis. Activation of esophageal endothelial cells exposed to acidic refluxate may contribute to GERD in the setting of a disturbed mucosal squamous epithelial barrier (i.e., erosive esophagitis, peptic ulceration).


Assuntos
Células Endoteliais/metabolismo , Esôfago/irrigação sanguínea , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular/fisiologia , Classe I de Fosfatidilinositol 3-Quinases , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel Bidimensional , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Esôfago/citologia , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP27 , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Humanos , Concentração de Íons de Hidrogênio , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Fosforilação , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Transdução de Sinais/fisiologia , Suínos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA