Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 10(12): e0145777, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717516

RESUMO

The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis.


Assuntos
Aquaporina 1/metabolismo , Endotélio Vascular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Óxido Nítrico/metabolismo , Aquaporina 1/genética , Transporte Biológico/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Placa Aterosclerótica/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Mecânico , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
2.
Vascul Pharmacol ; 75: 7-18, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26254104

RESUMO

A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Estilbenos/farmacologia , Antioxidantes/farmacologia , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Neovascularização Fisiológica/efeitos dos fármacos , Resveratrol , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
3.
PLoS One ; 10(4): e0124347, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884209

RESUMO

Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR)-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1). In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1) and reduced numbers of CD206-positive (M2) macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular patients.


Assuntos
Circulação Colateral/fisiologia , Galectina 2/fisiologia , Inflamação/fisiopatologia , Macrófagos/fisiologia , Monócitos/fisiologia , Animais , Antígenos CD40/biossíntese , Diferenciação Celular , Células Cultivadas , Circulação Colateral/efeitos dos fármacos , Células Dendríticas/metabolismo , Galectina 2/deficiência , Galectina 2/genética , Galectina 2/farmacologia , Regulação da Expressão Gênica , Humanos , Lectinas Tipo C/biossíntese , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/fisiologia , Macrófagos/classificação , Macrófagos/efeitos dos fármacos , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Fenótipo , Ligação Proteica/efeitos dos fármacos , Células RAW 264.7 , Receptores de Superfície Celular/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais , Linfócitos T/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
J Interferon Cytokine Res ; 35(6): 411-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25714660

RESUMO

In this review we discuss the current literature on the effects of type I interferons (IFN) and their downstream effectors on vascular growth in experimental models in vitro and in vivo. In addition to its well-documented role in angiogenesis, that is, the growth of new capillaries from existing vessels, we will also describe emerging evidence and mechanisms by which type I IFN may inhibit arteriogenesis, that is, the expansive remodeling of existing collateral arteries. Crucial in both processes is the common role of circulating monocytes, which are known to act as pivotal cellular modulators in revascularization through secreted chemokines, proteases, and growth factors. These secreted molecules, which are all modulated by IFN signaling, act via degradation of the extracellular matrix and by stimulating the proliferation of vascular smooth muscle cells and endothelial cells. Thus, next to the antiviral and immunomodulatory activities of type I IFNs, a potent role of IFN-ß as modulator of revascularization is now emerging and may be considered a potential clinical target for the stimulation of angiogenesis and arteriogenesis in ill-perfused tissues.


Assuntos
Estenose da Valva Aórtica/metabolismo , Interferon beta/farmacologia , Morfogênese/efeitos dos fármacos , Isquemia Miocárdica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Estenose da Valva Aórtica/imunologia , Estenose da Valva Aórtica/patologia , Artérias/citologia , Artérias/efeitos dos fármacos , Artérias/imunologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interferon beta/genética , Interferon beta/imunologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/imunologia , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia
5.
Cardiovasc Diabetol ; 13: 150, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361524

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs). METHODS: PACs were isolated from bone marrow of 10-12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 µmol/L) or GW9662 (10 µmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model. RESULTS: ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells. CONCLUSIONS: In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , PPAR gama/metabolismo , Células-Tronco/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Hipoglicemiantes/farmacologia , Isquemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , PPAR gama/genética , Rosiglitazona , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Cicatrização/efeitos dos fármacos
6.
J Mol Cell Cardiol ; 67: 94-102, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24389343

RESUMO

Acute myocardial infarction (AMI) is accompanied by increased expression of Toll like receptors (TLR)-2 and TLR4 on circulating monocytes. In animal models, blocking TLR2/4 signaling reduces inflammatory cell influx and infarct size. The clinical consequences of TLR activation during AMI in humans are unknown, including its role in long-term cardiac functional outcome Therefore, we analyzed gene expression in whole blood samples from 28 patients with an acute ST elevation myocardial infarction (STEMI), enrolled in the EXenatide trial for AMI patients (EXAMI), both at admission and after 4-month follow-up, by whole genome expression profiling and real-time PCR. Cardiac function was determined by cardiac magnetic resonance (CMR) imaging at baseline and after 4-month follow-up. TLR pathway activation was shown by increased expression of TLR4 and its downstream genes, including IL-18R1, IL-18R2, IL-8, MMP9, HIF1A, and NFKBIA. In contrast, expression of the classical TLR-induced genes, TNF, was reduced. Bioinformatics analysis and in vitro experiments explained this noncanonical TLR response by identification of a pivotal role for HIF-1α. The extent of TLR activation and IL-18R1/2 expression in circulating cells preceded massive troponin-T release and correlated with the CMR-measured ischemic area (R=0.48, p=0.01). In conclusion, we identified a novel HIF-1-dependent noncanonical TLR activation pathway in circulating leukocytes leading to enhanced IL-18R expression which correlated with the magnitude of the ischemic area. This knowledge may contribute to our mechanistic understanding of the involvement of the innate immune system during STEMI and may yield diagnostic and prognostic value for patients with myocardial infarction.


Assuntos
Interleucina-18/metabolismo , Infarto do Miocárdio/fisiopatologia , Receptor 4 Toll-Like/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucina-18/sangue , Interleucina-18/genética , Leucócitos/metabolismo , Pessoa de Meia-Idade , Receptor 4 Toll-Like/sangue , Receptor 4 Toll-Like/genética , Regulação para Cima
7.
Curr Cardiol Rev ; 10(1): 29-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23638831

RESUMO

The formation of collateral vessels (arteriogenesis) to sustain perfusion in ischemic tissue is native to the body and can compensate for coronary stenosis. However, arteriogenesis is a complex process and is dependent on many different factors. Although animal studies on collateral formation and stimulation show promising data, clinical trials have failed to replicate these results. Further research to the exact mechanisms is needed in order to develop a pharmalogical stimulant. This review gives an overview of recent data in the field of arteriogenesis.


Assuntos
Circulação Colateral/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Neovascularização Fisiológica/fisiologia , Indutores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Animais , Bradicinina/fisiologia , Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Macrófagos/fisiologia , Camundongos , Monócitos/fisiologia , Músculo Liso Vascular/fisiologia , Neurregulinas/fisiologia , Plasma Rico em Plaquetas/fisiologia , Receptores da Bradicinina/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Vasodilatadores/uso terapêutico
8.
Antioxid Redox Signal ; 20(11): 1677-92, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24206054

RESUMO

AIMS: Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that can be down-regulated in diabetes. Its importance for mature endothelium has been described, but its role in proangiogenic progenitors is not well known. We investigated the effect of HO-1 on the angiogenic potential of bone marrow-derived cells (BMDCs) and on blood flow recovery in ischemic muscle of diabetic mice. RESULTS: Lack of HO-1 decreased the number of endothelial progenitor cells (Lin(-)CD45(-)cKit(-)Sca-1(+)VEGFR-2(+)) in murine bone marrow, and inhibited the angiogenic potential of cultured BMDCs, affecting their survival under oxidative stress, proliferation, migration, formation of capillaries, and paracrine proangiogenic potential. Transcriptome analysis of HO-1(-/-) BMDCs revealed the attenuated up-regulation of proangiogenic genes in response to hypoxia. Heterozygous HO-1(+/-) diabetic mice subjected to hind limb ischemia exhibited reduced local expression of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), stromal cell-derived factor 1 (SDF-1), VEGFR-1, VEGFR-2, and CXCR-4. This was accompanied by impaired revascularization of ischemic muscle, despite a strong mobilization of bone marrow-derived proangiogenic progenitors (Sca-1(+)CXCR-4(+)) into peripheral blood. Blood flow recovery could be rescued by local injections of conditioned media harvested from BMDCs, but not by an injection of cultured BMDCs. INNOVATION: This is the first report showing that HO-1 haploinsufficiency impairs tissue revascularization in diabetes and that proangiogenic in situ response, not progenitor cell mobilization, is important for blood flow recovery. CONCLUSIONS: HO-1 is necessary for a proper proangiogenic function of BMDCs. A low level of HO-1 in hyperglycemic mice decreases restoration of perfusion in ischemic muscle, which can be rescued by a local injection of conditioned media from cultured BMDCs.


Assuntos
Células da Medula Óssea/fisiologia , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica , Células-Tronco/fisiologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Haploinsuficiência , Membro Posterior/irrigação sanguínea , Hiperglicemia/metabolismo , Isquemia/enzimologia , Masculino , Camundongos , Camundongos Knockout , Regeneração , Transplante de Células-Tronco , Transcriptoma
10.
Eur J Clin Invest ; 43(1): 100-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23083351

RESUMO

BACKGROUND: The role of bone marrow-derived cells in stimulating angiogenesis, vascular repair or remodelling has been well established, but the nature of the circulating angiogenic cells is still controversial. DESIGN: The existing literature on different cell types that contribute to angiogenesis in multiple pathologies, most notably ischaemic and tumour angiogenesis, is reviewed, with a focus on subtypes of angiogenic mononuclear cells and their local recruitment and activation. RESULTS: A large number of different cells of myeloid origin support angiogenesis without incorporating permanently into the newly formed vessel, which distinguishes these circulating angiogenic cells (CAC) from endothelial progenitor cells (EPC). Although CAC frequently express individual endothelial markers, they all share multiple characteristics of monocytes and only express a limited set of discriminative surface markers in the circulation. When cultured ex vivo, or surrounding the angiogenic vessel in vivo, however, many of them acquire similar additional markers, making their discrimination in situ difficult. CONCLUSION: Different subsets of monocytes show angiogenic properties, but the distinct microenvironment, in vitro or in vivo, is needed for the development of their pro-angiogenic function.


Assuntos
Células Endoteliais/fisiologia , Monócitos/fisiologia , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia , Humanos , Isquemia/fisiopatologia
11.
J Am Acad Dermatol ; 68(4): 638-646, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266341

RESUMO

BACKGROUND: Episodes of microvascular proliferation associated with volume expansion have been observed in arteriovenous malformations (AVMs) of skin and soft tissue. OBJECTIVE: We sought to investigate the relationship between a microvascular proliferative response and flow velocity in AVMs. METHODS: Resection specimens of 80 AVMs were clinically categorized as either high- or low-flow lesions, and histopathologically screened for the presence of microvessels, inflammation, thrombosis, or a combination of these. Immunohistochemistry was performed with endoglin (CD105), von Willebrand factor, and fibrinogen antibodies. RESULTS: Clinically, 37 AVMs were classified as high-flow lesions and 43 as low-flow lesions. In 81% of high-flow lesions microvascular proliferations were seen versus in 14% of low-flow lesions (P < .005). In high-flow lesions, which were embolized before surgery (30% of all), 88% showed microvascular proliferation, 88% inflammation, and 33% thrombosis. However, similar vasoproliferative responses were also observed in nonembolized AVM (69% high-flow and 14% low-flow lesions). Endoglin was more frequently expressed in high-flow lesions. Extracellular von Willebrand factor staining was found in most lesions, irrespective of flow type or presence of microvascular proliferations. LIMITATIONS: The study was carried out at a single tertiary referral center. CONCLUSIONS: Microvascular proliferative masses in AVMs appear to be strongly associated with high-flow characteristics. This could be explained to some extent by previous therapeutic embolization and/or inflammation in the lesion. However, occurrence of similar microvascular responses in AVM that were not embolized before surgery suggests that the biomechanical effects of high flow in these lesions may also have an angiogenic effect.


Assuntos
Malformações Arteriovenosas/patologia , Malformações Arteriovenosas/fisiopatologia , Embolização Terapêutica/efeitos adversos , Inflamação/complicações , Microvasos/patologia , Adolescente , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
12.
J Proteome Res ; 11(5): 2925-36, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22468712

RESUMO

Vascular endothelial cells contain unique storage organelles, designated Weibel-Palade bodies (WPBs), that deliver inflammatory and hemostatic mediators to the vascular lumen in response to agonists like thrombin and vasopressin. The main component of WPBs is von Willebrand factor (VWF), a multimeric glycoprotein crucial for platelet plug formation. In addition to VWF, several other components are known to be stored in WPBs, like osteoprotegerin, monocyte chemoattractant protein-1 and angiopoetin-2 (Ang-2). Here, we used an unbiased proteomics approach to identify additional residents of WPBs. Mass spectrometry analysis of purified WPBs revealed the presence of several known components such as VWF, Ang-2, and P-selectin. Thirty-five novel candidate WPB residents were identified that included insulin-like growth factor binding protein-7 (IGFBP7), which has been proposed to regulate angiogenesis. Immunocytochemistry revealed that IGFBP7 is a bona fide WPB component. Cotransfection studies showed that IGFBP7 trafficked to pseudo-WPB in HEK293 cells. Using a series of deletion variants of VWF, we showed that targeting of IGFBP7 to pseudo-WPBs was dependent on the carboxy-terminal D4-C1-C2-C3-CK domains of VWF. IGFBP7 remained attached to ultralarge VWF strings released upon exocytosis of WPBs under flow. The presence of IGFBP7 in WPBs highlights the role of this subcellular compartment in regulation of angiogenesis.


Assuntos
Células Endoteliais/química , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Proteômica/métodos , Corpos de Weibel-Palade/química , Células Endoteliais/fisiologia , Exocitose , Vetores Genéticos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Neovascularização Fisiológica , Selectina-P/química , Estrutura Terciária de Proteína , Transporte Proteico , Transfecção , Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/química
13.
Circ Res ; 109(10): 1115-9, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21903938

RESUMO

RATIONALE: Aging represents a major risk factor for coronary artery disease and aortic aneurysm formation. MicroRNAs (miRs) have emerged as key regulators of biological processes, but their role in age-associated vascular pathologies is unknown. OBJECTIVE: We aim to identify miRs in the vasculature that are regulated by age and play a role in age-induced vascular pathologies. METHODS AND RESULTS: Expression profiling of aortic tissue of young versus old mice identified several age-associated miRs. Among the significantly regulated miRs, the increased expression of miR-29 family members was associated with a profound downregulation of numerous extracellular matrix (ECM) components in aortas of aged mice, suggesting that this miR family contributes to ECM loss, thereby sensitizing the aorta for aneurysm formation. Indeed, miR-29 expression was significantly induced in 2 experimental models for aortic dilation: angiotensin II-treated aged mice and genetically induced aneurysms in Fibulin-4(R/R) mice. More importantly, miR-29b levels were profoundly increased in biopsies of human thoracic aneurysms, obtained from patients with either bicuspid (n=79) or tricuspid aortic valves (n=30). Finally, LNA-modified antisense oligonucleotide-mediated silencing of miR-29 induced ECM expression and inhibited angiotensin II-induced dilation of the aorta in mice. CONCLUSION: In conclusion, miR-29-mediated downregulation of ECM proteins may sensitize the aorta to the formation of aneurysms in advanced age. Inhibition of miR-29 in vivo abrogates aortic dilation in mice, suggesting that miR-29 may represent a novel molecular target to augment matrix synthesis and maintain vascular wall structural integrity.


Assuntos
Aorta/metabolismo , Aneurisma Aórtico/genética , MicroRNAs/análise , MicroRNAs/metabolismo , Envelhecimento/genética , Angiotensina II , Animais , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/prevenção & controle , Biópsia , Dilatação Patológica , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Oligorribonucleotídeos Antissenso/administração & dosagem
14.
J Cell Physiol ; 226(11): 2841-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21302282

RESUMO

Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm(2)) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm(2) (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study.


Assuntos
Células Endoteliais/fisiologia , Resistência ao Cisalhamento , Estresse Mecânico , Fatores Ativadores da Transcrição/metabolismo , Sítios de Ligação , Células Cultivadas , AMP Cíclico/biossíntese , Regulação para Baixo , Fosfatases de Especificidade Dupla/biossíntese , Endotelina-1/biossíntese , Epoprostenol/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Metalotioneína/biossíntese , NADPH Oxidases/biossíntese , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Peptídeo Intestinal Vasoativo/biossíntese
15.
Eur Heart J ; 32(3): 371-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20494899

RESUMO

AIMS: Coronary artery disease (CAD) patients have less circulating proangiogenic cells (PACs), formerly known as endothelial progenitor cells, which exhibit impaired neovascularization properties. Inverse correlations were also found between PAC function and risk factors like age. Krüppel-like factor 2 (KLF2) is expressed by mature endothelial cells (ECs), is induced by both shear stress and statins, and provokes endothelial functional differentiation. The aim of this study is to identify whether KLF2 can reverse negative effects of ageing on PAC function. METHODS AND RESULTS: We describe that progenitor cells in the bone marrow and PACs also express KLF2 at a comparable level to mature ECs and that senescence decreases KLF2 levels. To study the effects of ageing on KLF2 levels, we compared progenitor cells of 4 weeks and 16- to 18-month-old C57BL/6 mice. In addition to the three-fold reduction of circulating Sca1(+)/c-Kit(+)/Lin(-) progenitor cells and the 15% reduction of Sca1(+)/Flk1(+) endothelial-committed progenitor cells, the spleen-derived PACs and bone marrow-derived progenitor cells isolated from aged mice showed a lower level of KLF2 when compared with young mice. Lentiviral overexpression of KLF2 increased human PAC numbers and endothelial nitric oxide synthase expression by 60% during in vitro culture. Endothelial lineage-specific KLF2 overexpression in aged bone marrow-derived mononuclear cells strongly augments neovascularization in vivo in a murine hind-limb ischaemia model. CONCLUSION: These results imply that KLF2 is an attractive novel target to rejuvenate PACs before autologous administration to CAD patients.


Assuntos
Senescência Celular/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Células Endoteliais/citologia , Endotélio Vascular/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco/citologia , Animais , Circulação Colateral/fisiologia , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Leucócitos Mononucleares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia
16.
J Biol Chem ; 285(45): 34677-85, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20736166

RESUMO

Increased interferon (IFN)-ß signaling in patients with insufficient coronary collateralization and an inhibitory effect of IFNß on collateral artery growth in mice have been reported. The mechanisms of IFNß-induced inhibition of arteriogenesis are unknown. In stimulated monocytes from patients with chronic total coronary artery occlusion and decreased arteriogenic response, whole genome expression analysis showed increased expression of IFNß-regulated genes. Immunohistochemically, the IFNß receptor was localized in the vascular media of murine collateral arteries. Treatment of vascular smooth muscle cells (VSMC) with IFNß resulted in an attenuated proliferation, cell-cycle arrest, and increased expression of cyclin-dependent kinase inhibitor-1A (p21). The growth inhibitory effect of IFNß was attenuated by inhibition of p21 by RNA interference. IFNß-treated THP1 monocytes showed enhanced apoptosis. Subsequently, we tested if collateral artery growth can be stimulated by inhibition of IFNß-signaling. RNA interference of the IFNß receptor-1 (IFNAR1) increased VSMC proliferation, cell cycle progression, and reduced p21 gene expression. IFNß signaling and FAS and TRAIL expression were attenuated in monocytes from IFNAR1(-/-) mice, indicating reduced monocyte apoptosis. Hindlimb perfusion restoration 1 week after femoral artery ligation was improved in IFNAR1(-/-) mice compared with wild-type mice as assessed by infusion of fluorescent microspheres. These results demonstrate that IFNß inhibits collateral artery growth and VSMC proliferation through p21-dependent cell cycle arrest and induction of monocyte apoptosis. Inhibition of IFNß stimulates VSMC proliferation and collateral artery growth.


Assuntos
Ciclo Celular , Oclusão Coronária/metabolismo , Interferon beta/antagonistas & inibidores , Monócitos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Animais , Apoptose/genética , Células Cultivadas , Oclusão Coronária/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Interferência de RNA , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
17.
Physiol Genomics ; 41(3): 212-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20068025

RESUMO

We focus on similarities in the transcriptome of human Kupffer cells and alveolar, splenic, and atherosclerotic plaque-residing macrophages. We hypothesized that these macrophages share a common expression signature. We performed microarray analysis on mRNA from these subsets (4 patients) and developed a novel statistical method to identify genes with significantly similar expression levels. Phenotypic and functional diversity between macrophage subpopulations reflects their plasticity to respond to microenvironmental signals. Apart from detecting differences in expression profiles, the comparison of the transcriptomes of different macrophage populations may also allow the definition of molecular similarities between these subsets. This new method calculates the maximum difference in gene expression level, based on the estimated confidence interval on that gene's expression variance. We listed the genes by equivalence ranking relative to expression level. FDR estimation was used to determine significance. We identified 500 genes with significantly equivalent expression levels in the macrophage subsets at 5.5% FDR using a confidence level of α = 0.05 for equivalence. Among these are the established macrophage marker CD68, IL1 receptor antagonist, and MHC-related CD1C. These 500 genes were submitted to IPA and GO clustering using DAVID. Additionally, hierarchical clustering of these genes in the Novartis human gene expression atlas revealed a subset of 200 genes specifically expressed in macrophages. Equivalently expressed genes, identified by this new method, may not only help to dissect common molecular mechanisms, but also to identify cell- or condition-specific sets of marker genes that can be used for drug targeting and molecular imaging.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Macrófagos/metabolismo , Análise em Microsséries/métodos , Estatística como Assunto , Transcriptoma/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos
18.
Blood ; 115(12): 2533-42, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20032497

RESUMO

The shear stress-induced transcription factor Krüppel-like factor 2 (KLF2) confers antiinflammatory properties to endothelial cells through the inhibition of activator protein 1, presumably by interfering with mitogen-activated protein kinase (MAPK) cascades. To gain insight into the regulation of these cascades by KLF2, we used antibody arrays in combination with time-course mRNA microarray analysis. No gross changes in MAPKs were detected; rather, phosphorylation of actin cytoskeleton-associated proteins, including focal adhesion kinase, was markedly repressed by KLF2. Furthermore, we demonstrate that KLF2-mediated inhibition of Jun NH(2)-terminal kinase (JNK) and its downstream targets ATF2/c-Jun is dependent on the cytoskeleton. Specifically, KLF2 directs the formation of typical short basal actin filaments, termed shear fibers by us, which are distinct from thrombin- or tumor necrosis factor-alpha-induced stress fibers. KLF2 is shown to be essential for shear stress-induced cell alignment, concomitant shear fiber assembly, and inhibition of JNK signaling. These findings link the specific effects of shear-induced KLF2 on endothelial morphology to the suppression of JNK MAPK signaling in vascular homeostasis via novel actin shear fibers.


Assuntos
Citoesqueleto de Actina/metabolismo , Células Endoteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Aorta/citologia , Células Cultivadas , Células Endoteliais/citologia , Artéria Femoral/citologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fosforilação/fisiologia , Ratos , Fluxo Sanguíneo Regional/fisiologia , Veia Safena/citologia , Estresse Mecânico , Transdução Genética , Veias Umbilicais/citologia , Quinases Associadas a rho/metabolismo
19.
Am J Pathol ; 174(5): 1594-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19395650

RESUMO

This Commentary provides perspective on a related article by Sun-Jin Kim and coworkers (Am J Pathol: 172 AJP08-0819), who assess the contribution of bone marrow-derived cells to tumor angiogenesis in a physiologic, non-myeloablative setting and conclude that the actual angiogenic cell type incorporated in the newly formed vessels is actually monocytes/macrophages.


Assuntos
Endotélio Vascular/fisiologia , Células Precursoras de Monócitos e Macrófagos/fisiologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica/metabolismo , Animais , Humanos , Pericitos/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
20.
Cardiovasc Res ; 81(1): 187-96, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18805782

RESUMO

AIMS: In a recent report, we established at the genome-wide level those genes that are specifically upregulated in the endothelium of atherosclerotic plaques in human arteries. As the transcriptome data revealed that mRNA for the tetraspanin family member CD81 is significantly and specifically upregulated in the endothelium overlying early atheroma, we set out to validate these results on the protein level, and investigate the functional consequences of CD81 upregulation. METHODS AND RESULTS: Immunohistochemical analysis in an independent set of donor arteries verified in the endothelium of early human atherosclerotic lesions the enhanced expression of CD81, which appears oxidative stress-dependent. Using lentiviral overexpression and silencing in human umbilical endothelial cells, we established in an in vitro flow adhesion assay that elevated endothelial CD81 is associated with increased monocyte adhesion to non-activated CD81-transduced endothelial cells, approaching the levels normally only attained after tumour necrosis factor alpha stimulation. The CD81 effect was dependent on both intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as it was abolished in the presence of a mixture of anti-ICAM-1 and anti-VCAM-1 antibodies. Flow cytometry revealed that increased CD81 levels did not increase total ICAM-1 and VCAM-1 surface expression. Instead, it concentrated the available adhesion molecules into membrane clusters, as indicated by confocal and electron microscopy. CD81 also colocalized with ICAM-1 and VCAM-1 in the adhesion rings around bound monocytes. CONCLUSION: Endothelial CD81 upregulated in early human atheroma has the potential to play a crucial role in the initial stages of atherosclerotic plaque formation by increasing monocyte adhesion prior to the full-blown inflammatory response.


Assuntos
Antígenos CD/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Endotélio Vascular/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Biomarcadores/metabolismo , Adesão Celular , Células Cultivadas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Estresse Oxidativo/fisiologia , Tetraspanina 28 , Regulação para Cima/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA