Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Cancer ; 70(2): 278-287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29313726

RESUMO

The association between a Western Diet and colon cancer suggests that dietary factors and/or obesity may contribute to cancer progression. Our objective was to develop a new animal model of obesity and the associated pathophysiology to investigate human cancer independent of dietary components that induce obesity. A novel congenic rat strain was established by introducing the fa allele from the Zucker rat into the Rowett Nude rat to generate a "fatty nude rat". The obese phenotype was first characterized in the new model. To then examine the utility of this model, lean and obese rats were implanted with HT-29 human colon cancer xenografts and tumor growth monitored. Fatty nude rats were visibly obese and did not develop fasting hyperglycemia. Compared to lean rats, fatty nude rats developed fasting hyperinsulinemia, glucose intolerance, and insulin resistance. Colon cancer tumor growth rate and final weight were increased (P < 0.05) in fatty nude compared to lean rats. Final tumor weight was associated with p38 kinase phosphorylation (P < 0.01) in fatty nude rats. We have established a novel model of obesity and pre-type 2 diabetes that can be used to investigate human cancer and therapeutics in the context of obesity and its associated pathophysiology.


Assuntos
Glucose/metabolismo , Obesidade/etiologia , Ratos Endogâmicos/genética , Alelos , Animais , Animais Congênicos , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Glucose/genética , Células HT29 , Humanos , Resistência à Insulina , Masculino , Camundongos Nus , Obesidade/metabolismo , Ratos Zucker , Receptores para Leptina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nutr Res ; 36(12): 1325-1334, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866828

RESUMO

Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1tm1Mom mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD.


Assuntos
Neoplasias do Colo , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/efeitos adversos , Resistência à Insulina , Obesidade/complicações , Tecido Adiposo Branco/metabolismo , Animais , Quimiocina CCL2/metabolismo , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Epididimo/metabolismo , Xenoenxertos/crescimento & desenvolvimento , Humanos , Inflamação/genética , Insulina/sangue , Gordura Intra-Abdominal/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leptina/sangue , Masculino , Camundongos Endogâmicos , Obesidade/sangue , Obesidade/metabolismo , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA