Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074415

RESUMO

Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.


Assuntos
Artrite Gotosa , Gota , Doenças Hereditárias Autoinflamatórias , Camundongos , Humanos , Animais , Quinases da Família src/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Artrite Gotosa/metabolismo , Gota/metabolismo , Inflamação/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(9): e2219346120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812205

RESUMO

Titin is a molecular spring in parallel with myosin motors in each muscle half-sarcomere, responsible for passive force development at sarcomere length (SL) above the physiological range (>2.7 µm). The role of titin at physiological SL is unclear and is investigated here in single intact muscle cells of the frog (Rana esculenta), by combining half-sarcomere mechanics and synchrotron X-ray diffraction in the presence of 20 µM para-nitro-blebbistatin, which abolishes the activity of myosin motors and maintains them in the resting state even during activation of the cell by electrical stimulation. We show that, during cell activation at physiological SL, titin in the I-band switches from an SL-dependent extensible spring (OFF-state) to an SL-independent rectifier (ON-state) that allows free shortening while resisting stretch with an effective stiffness of ~3 pN nm-1 per half-thick filament. In this way, I-band titin efficiently transmits any load increase to the myosin filament in the A-band. Small-angle X-ray diffraction signals reveal that, with I-band titin ON, the periodic interactions of A-band titin with myosin motors alter their resting disposition in a load-dependent manner, biasing the azimuthal orientation of the motors toward actin. This work sets the stage for future investigations on scaffold and mechanosensing-based signaling functions of titin in health and disease.


Assuntos
Citoesqueleto de Actina , Músculo Esquelético , Conectina , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Miosinas/fisiologia , Contração Muscular
3.
J Invest Dermatol ; 142(4): 1114-1125, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34656615

RESUMO

Phospholipase Cγ2 (PLCγ2) mediates tyrosine kinase‒coupled receptor signaling in various hematopoietic lineages. Although PLCγ2 has been implicated in certain human and mouse inflammatory disorders, its contribution to autoimmune and inflammatory skin diseases is poorly understood. In this study, we tested the role of PLCγ2 in a mouse model of epidermolysis bullosa acquisita triggered by antibodies against type VII collagen (C7), a component of the dermo-epidermal junction. PLCγ2-deficient (Plcg2-/-) mice and bone marrow chimeras with a Plcg2-/- hematopoietic system were completely protected from signs of anti-C7-induced skin disease, including skin erosions, dermal‒epidermal separation, and inflammation, despite normal circulating levels and skin deposition of anti-C7 antibodies. PLCγ2 was required for the tissue infiltration of neutrophils, eosinophils, and monocytes/macrophages as well as for the accumulation of proinflammatory mediators (including IL-1ß, MIP-2, and LTB4) and reactive oxygen species. Mechanistic experiments revealed a role for PLCγ2 in the release of proinflammatory mediators and reactive oxygen species but not in the intrinsic migratory capacity of leukocytes. The phospholipase C inhibitor U73122 inhibited dermal-epidermal separation of human skin sections incubated with human neutrophils in the presence of anti-C7 antibodies. Taken together, our results suggest a critical role for PLCγ2 in the pathogenesis of the inflammatory form of epidermolysis bullosa acquisita.


Assuntos
Epidermólise Bolhosa Adquirida , Animais , Autoanticorpos , Colágeno Tipo VII/genética , Modelos Animais de Doenças , Camundongos , Fosfolipase C gama , Espécies Reativas de Oxigênio , Pele/patologia
4.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035452

RESUMO

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Assuntos
Músculo Esquelético/metabolismo , Miosinas de Músculo Esquelético/efeitos dos fármacos , Miosinas de Músculo Esquelético/genética , Adulto , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Miosinas/efeitos dos fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Miosinas de Músculo Esquelético/metabolismo
5.
Sci Rep ; 10(1): 13341, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769996

RESUMO

Subcellular dynamics of non-muscle myosin 2 (NM2) is crucial for a broad-array of cellular functions. To unveil mechanisms of NM2 pharmacological control, we determined how the dynamics of NM2 diffusion is affected by NM2's allosteric inhibitors, i.e. blebbistatin derivatives, as compared to Y-27632 inhibiting ROCK, NM2's upstream regulator. We found that NM2 diffusion is markedly faster in central fibers than in peripheral stress fibers. Y-27632 accelerated NM2 diffusion in both peripheral and central fibers, whereas in peripheral fibers blebbistatin derivatives slightly accelerated NM2 diffusion at low, but markedly slowed it at high inhibitor concentrations. In contrast, rapid NM2 diffusion in central fibers was unaffected by direct NM2 inhibition. Using our optopharmacological tool, Molecular Tattoo, sub-effective concentrations of a photo-crosslinkable blebbistatin derivative were increased to effective levels in a small, irradiated area of peripheral fibers. These findings suggest that direct allosteric inhibition affects the diffusion profile of NM2 in a markedly different manner compared to the disruption of the upstream control of NM2. The pharmacological action of myosin inhibitors is channeled through autonomous molecular processes and might be affected by the load acting on the NM2 proteins.


Assuntos
Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Linhagem Celular Tumoral , Difusão , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA