Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761636

RESUMO

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Assuntos
Vírus da Encefalomiocardite , Multimerização Proteica , RNA de Cadeia Dupla , RNA Viral , eIF-2 Quinase , eIF-2 Quinase/metabolismo , eIF-2 Quinase/química , Humanos , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/química , Vírus da Encefalomiocardite/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/química , Poli I-C/farmacologia , Conformação de Ácido Nucleico
2.
J Clin Med ; 11(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36233607

RESUMO

The incidence of gastric cancer in Okinawa Prefecture is the lowest in Japan, which is attributed to differences in strains of Helicobacter pylori in Okinawa and other prefectures in Japan. Our aim was to compare the endoscopic findings of H. pylori-infected gastric mucosa in Okinawa and Tokyo. Patients who underwent upper gastrointestinal endoscopy (UGI) at Northern Okinawa Medical Center (Okinawa group) and Juntendo University Hospital (Tokyo group) from April 2019 to March 2020 were included. Patients diagnosed with H. pylori-infected gastric mucosa were retrospectively compared between the Okinawa and Tokyo groups according to the Kyoto Classification of Gastritis. The numbers of subjects (Okinawa/Tokyo) were 435/352, male/female ratio was 247:188/181:171, and age was 53.3 ± 14.7/64.6 ± 14.3 (mean ± standard deviation) years. Regarding the Kyoto Classification of Gastritis, the prevalence (Okinawa/Tokyo) of the closed type of atrophic gastritis was 73%/37% (p < 0.001), diffuse redness 80%/84% (p = 0.145), mucosal swelling 46%/46% (p = 0.991), enlarged fold 26%/32% (p = 0.048), spotty redness 77%/68% (p = 0.002), sticky mucus 17%/36% (p < 0.001), and intestinal metaplasia 32%/42% (p < 0.001). Age analysis also revealed that closed-type atrophy and spotty redness were more frequent in the Okinawa group than in the Tokyo group. There may be regional differences in endoscopic findings of H. pylori-infected gastric mucosa between Okinawa and Tokyo.

3.
J Biol Chem ; 298(5): 101844, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307347

RESUMO

Eukaryotic mRNAs possess a poly(A) tail at their 3'-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1-poly(A) and PABPC1-Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2-RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 µM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 µM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.


Assuntos
Poli A , Proteínas de Ligação a Poli(A) , Biossíntese de Proteínas , Motivo de Reconhecimento de RNA , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Biochem Biophys Res Commun ; 553: 9-16, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33756349

RESUMO

The RNA-binding protein Ataxin-2 regulates translation and mRNA stability through cytoplasmic polyadenylation of the targets. Here we newly identified DDX6 as a positive regulator of the cytoplasmic polyadenylation. Analysis of Ataxin-2 interactome using LC-MS/MS revealed prominent interaction with the DEAD-box RNA helicase DDX6. DDX6 interacted with components of the Ataxin-2 polyadenylation machinery; Ataxin-2, PABPC1 and PAPD4. As in the case for Ataxin-2 downregulation, DDX6 downregulation led to an increase in Ataxin-2 target mRNAs with short poly(A) tails as well as a reduction in their protein expression. In contrast, Ataxin-2 target mRNAs with short poly(A) tails were decreased by the overexpression of Ataxin-2, which was compromised by the DDX6 downregulation. However, polyadenylation induced by Ataxin-2 tethering was not affected by the DDX6 downregulation. Taken together, these results suggest that DDX6 positively regulates Ataxin-2-induced cytoplasmic polyadenylation to maintain poly(A) tail length of the Ataxin-2 targets provably through accelerating binding of Ataxin-2 to the target mRNAs.


Assuntos
Ataxina-2/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Cromatografia Líquida , Células HEK293 , Humanos , Poli A/genética , Poli A/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 295(2): 390-402, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31792053

RESUMO

MicroRNA-122 (miR-122) is highly expressed in hepatocytes, where it plays an important role in regulating cholesterol and fatty acid metabolism, and it is also a host factor required for hepatitis C virus replication. miR-122 is selectively stabilized by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2 (also known as PAPD4 or TENT2). However, it is unclear how GLD-2 specifically stabilizes miR-122. Here, we show that QKI7 KH domain-containing RNA binding (QKI-7), one of three isoforms of the QKI proteins, which are members of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, is involved in miR-122 stabilization. QKI down-regulation specifically decreased the steady-state level of mature miR-122, but did not affect the pre-miR-122 level. We also found that QKI-7 uses its C-terminal region to interact with GLD-2 and its QUA2 domain to associate with the RNA-induced silencing complex protein Argonaute 2 (Ago2), indicating that the GLD-2-QKI-7 interaction recruits GLD-2 to Ago2. QKI-7 exhibited specific affinity to miR-122 and significantly promoted GLD-2-mediated 3' adenylation of miR-122 in vitro Taken together, our findings indicate that miR-122 binds Ago2-interacting QKI-7, which recruits GLD-2 for 3' adenylation and stabilization of miR-122.


Assuntos
MicroRNAs/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas Argonautas/metabolismo , Linhagem Celular Tumoral , Humanos , Poliadenilação , Mapas de Interação de Proteínas , Estabilidade de RNA
6.
Biochem Biophys Res Commun ; 511(2): 422-426, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30799083

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at post-transcriptional level via translational repression and/or mRNA degradation. miRNAs are associated with many cellular processes, and down-regulation of miRNAs causes numerous diseases including cancer, neurological disorders, inflammation, and cardiovascular diseases, for which miRNA replacement therapy has emerged as a promising approach. This approach aims to restore down-regulated miRNAs using synthetic miRNA mimics. However, it remains a critical issue that miRNA mimics are unstable and transient in cells. Here, we first show that miRNA mimics are rapidly degraded by a mechanism different from Tudor-staphylococcal/micrococcal-like nuclease (TSN)-mediated miRNA decay, which degrades endogenous miRNAs, and newly identified 2'-5'-oligoadenylate synthetase (OAS)/RNase L as key factors responsible for the degradation of miRNA mimics in human cells. Our results suggest that the OAS1 recognizes miRNA mimics and produces 2'-5'-oligoadenylates (2-5A), which leads to the activation of latent endoribonuclease RNase L to degrade miRNA mimics. A small-molecule inhibitor that blocks RNase L can stabilize miRNA mimics. These findings provide a promising method for the stabilization of miRNA mimics, as well as for the efficient miRNA replacement therapy.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endorribonucleases/metabolismo , MicroRNAs/metabolismo , Estabilidade de RNA , Células HeLa , Humanos , MicroRNAs/química
7.
Nucleic Acids Res ; 47(1): 432-449, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30395302

RESUMO

The 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway is an innate immune system that protects hosts against pathogenic viruses and bacteria through cleavage of exogenous single-stranded RNA; however, this system's selective targeting mechanism remains unclear. Here, we identified an mRNA quality control factor Dom34 as a novel restriction factor for a positive-sense single-stranded RNA virus. Downregulation of Dom34 and RNase L increases viral replication, as well as half-life of the viral RNA. Dom34 directly binds RNase L to form a surveillance complex to recognize and eliminate the exogenous RNA in a manner dependent on translation. Interestingly, the feature detected by the surveillance complex is not the specific sequence of the viral RNA but the 'exogenous nature' of the RNA. We propose the following model for the selective targeting of exogenous RNA; OAS3 activated by the exogenous RNA releases 2'-5'-oligoadenylates (2-5A), which in turn converts latent RNase L to an active dimer. This accelerates formation of the Dom34-RNase L surveillance complex, and its selective localization to the ribosome on the exogenous RNA, thereby promoting degradation of the RNA. Our findings reveal that the selective targeting of exogenous RNA in antiviral defense occurs via a mechanism similar to that in the degradation of aberrant transcripts in RNA quality control.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética , Viroses/genética , Vírus/genética , Nucleotídeos de Adenina/genética , Nucleotídeos de Adenina/metabolismo , Endonucleases/genética , Endorribonucleases/genética , Regulação Viral da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Estabilidade de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Ribossomos/genética , Ribossomos/virologia , Viroses/virologia , Replicação Viral/genética , Vírus/patogenicidade
8.
Prion ; : 1-7, 2018 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198379

RESUMO

The yeast Saccharomyces cerevisiae has proven to be a useful model system to investigate the mechanism of prion generation and inheritance, to which studies in Sup35 made a great contribution. Recent studies demonstrated that 'protein misfolding and aggregation' (i.e. amyloidogenesis) is a common principle underlying the pathogenesis of neurodegenerative diseases including prion, amyotrophic lateral sclerosis (ALS), Perkinson's (PD), Alzheimer's (AD) diseases and polyglutamine (polyQ) diseases such as spinocerebellar ataxia (SCA) and Hantington's disease (HD). By these findings, the yeast has again been drawing increased attention as a useful system for studying neurodegenerative proteinopathies. So far, it has been reported that proteolytic cleavage of causative amyloidogenic proteins might affect the pathogenesis of the respective neurodegenerative diseases. Although those reports provide a clear phenomenological description, in the majority of cases, it has remained elusive if proteolysis is directly involved in the pathogenesis of the diseases. Recently, we have demonstrated in yeast that proteolysis suppresses prion generation. The yeast-based strategy might make a breakthrough to the unsolved issues.

9.
J Biol Chem ; 292(49): 20113-20124, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038292

RESUMO

Prions are infectious proteins that cause fatal neurodegenerative disorders including Creutzfeldt-Jakob and bovine spongiform encephalopathy (mad cow) diseases. The yeast [PSI+] prion is formed by the translation-termination factor Sup35, is the best-studied prion, and provides a useful model system for studying such diseases. However, despite recent progress in the understanding of prion diseases, the cellular defense mechanism against prions has not been elucidated. Here, we report that proteolytic cleavage of Sup35 suppresses spontaneous de novo generation of the [PSI+] prion. We found that during yeast growth in glucose media, a maximum of 40% of Sup35 is cleaved at its N-terminal prion domain. This cleavage requires the vacuolar proteases PrA-PrB. Cleavage occurs in a manner dependent on translation but independently of autophagy between the glutamine/asparagine-rich (Q/N-rich) stretch critical for prion formation and the oligopeptide-repeat region required for prion maintenance, resulting in the removal of the Q/N-rich stretch from the Sup35 N terminus. The complete inhibition of Sup35 cleavage, by knocking out either PrA (pep4Δ) or PrB (prb1Δ), increased the rate of de novo formation of [PSI+] prion up to ∼5-fold, whereas the activation of Sup35 cleavage, by overproducing PrB, inhibited [PSI+] formation. On the other hand, activation of the PrB pathway neither cleaved the amyloid conformers of Sup35 in [PSI+] strains nor eliminated preexisting [PSI+]. These findings point to a mechanism antagonizing prion generation in yeast. Our results underscore the usefulness of the yeast [PSI+] prion as a model system to investigate defense mechanisms against prion diseases and other amyloidoses.


Assuntos
Proteínas Fúngicas/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Príons/antagonistas & inibidores , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeo Hidrolases/metabolismo , Príons/metabolismo , Vacúolos/enzimologia , Leveduras/metabolismo
10.
J Biol Chem ; 291(31): 15958-74, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281821

RESUMO

Hepatitis B virus (HBV) is a stealth virus, minimally inducing the interferon system required for efficient induction of both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of other, interferon-independent pathways leading to viral clearance. Given the known ability of helicases to bind viral nucleic acids, we performed a functional screening assay to identify helicases that regulate HBV replication. We identified the superkiller viralicidic activity 2-like (SKIV2L) RNA helicase (a homolog of the Saccharomyces cerevisiae Ski2 protein) on the basis of its direct and preferential interaction with HBV X-mRNA. This interaction was essential for HBV X-mRNA degradation at the RNA exosome. The degradation of HBV X-mRNA at the RNA exosome was also mediated by HBS1L (HBS1-like translational GTPase) protein, a known component of the host RNA quality control system. We found that the redundant HBV-precore translation initiation site present at the 3'-end of HBV X-mRNA (3' precore) is translationally active. The initiation of translation from this site without a proper stop codon was identified by the non-stop-mediated RNA decay mechanism leading to its degradation. Although 3' precore is present in the five main HBV-RNA transcripts, only X-mRNA lacks the presence of an upstream start codons for large, middle, and small (L, M, and S) HBV surface proteins. These upstream codons are in-frame with 3' precore translation initiation site, blocking its translation from the other HBV-mRNA transcripts. To our knowledge, this is the first demonstration of the anti-viral function of the non-stop-mediated RNA decay mechanism.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Vírus da Hepatite B/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transativadores/biossíntese , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células Hep G2 , Vírus da Hepatite B/genética , Humanos , RNA Mensageiro/genética , RNA Viral/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
11.
FEBS Lett ; 589(17): 2241-7, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26172506

RESUMO

The involvement of polypeptide chain-releasing factor eRF3 in translation termination and mRNA decay is well established. Moreover, the finding that the proteolytically processed isoform of eRF3 (p-eRF3) interacts with inhibitors of apoptosis proteins (IAPs) to activate caspase, implies that eRF3 is a cell death regulator. However, the protease(s) responsible for p-eRF3 production and how p-eRF3 regulates apoptosis remain unknown. Here, we show that calpain mediates p-eRF3 production in vitro and in living cells. p-eRF3 is produced in cells treated with ER stressors in a calpain-dependent manner. These findings suggest that p-eRF3 is a novel regulator of calpain-dependent cell death.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Western Blotting , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteólise
12.
Biochem Biophys Res Commun ; 455(3-4): 323-31, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25446091

RESUMO

The poly(A) tail of mRNAs plays pivotal roles in the posttranscriptional control of gene expression at both translation and mRNA stability. Recent findings demonstrate that the poly(A) tail is globally stabilized by some stresses. However, the mechanism underlying this phenomenon has not been elucidated. Here, we show that arsenite-induced oxidative stress inhibits deadenylation of mRNA primarily through downregulation of Tob and Pan3, both of which mediate the recruitment of deadenylases to mRNA. Arsenite selectively induces the proteolytic degradation of Tob and Pan3, and siRNA-mediated knockdown of Tob and Pan3 recapitulates stabilization of the mRNA poly(A) tail observed during arsenite stress. Although arsenite also inhibits translation by activating the eIF2α kinase HRI, arsenite-induced mRNA stabilization can be observed under HRI-depleted conditions. These results highlight the essential role of Tob and Pan3 in the stress-induced global stabilization of mRNA.


Assuntos
Arsenitos/química , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Regulação para Baixo , Células HeLa , Humanos , Estresse Oxidativo , Poli A/química , Ligação Proteica , Proteólise , Estabilidade de RNA , RNA Interferente Pequeno/metabolismo
13.
Biochem Biophys Res Commun ; 445(3): 639-44, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24569073

RESUMO

The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentified protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61-71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.


Assuntos
Núcleo Celular/metabolismo , Fatores de Terminação de Peptídeos/análise , Fatores de Terminação de Peptídeos/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Apoptose , Núcleo Celular/ultraestrutura , Células HeLa , Humanos , Carioferinas/metabolismo , Dados de Sequência Molecular , Sinais de Exportação Nuclear , Fases de Leitura Aberta , Terminação Traducional da Cadeia Peptídica , Mapas de Interação de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p14ARF/análise , Proteína Exportina 1
14.
Apoptosis ; 17(12): 1287-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054082

RESUMO

Polypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner. The effect is selective since the binding partners of eRF3, eRF1 and PABP, and an unrelated control, GAPDH, were not affected. Point mutations of aspartate residues within overlapping DXXD motifs near the amino terminus of eRF3 prevented the appearance of the UV-induced cleavage product, identifying D32 as the major cleavage site. The cleavage and degradation occurred in a similar time-dependent manner to those of eIF4G, a previously established caspase-3 target involved in the inhibition of translation during apoptosis. siRNA-mediated knockdown of eRF3 led to inhibition of cellular protein synthesis, supporting the idea that the decrease in the amount of eRF3 caused by the caspase-mediated degradation contributes to the inhibition of translation during apoptosis. This is the first report showing that eRF3 could serve as a target in the regulation of gene expression.


Assuntos
Apoptose , Caspase 3/metabolismo , Dano ao DNA/efeitos da radiação , Fatores de Terminação de Peptídeos/metabolismo , Apoptose/efeitos da radiação , Caspase 3/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Proteólise/efeitos da radiação , Raios Ultravioleta
15.
EMBO J ; 30(7): 1311-23, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21336257

RESUMO

Tob is a member of the anti-proliferative protein family, which functions in transcription and mRNA decay. We have previously demonstrated that Tob is involved in the general mechanism of mRNA decay by mediating mRNA deadenylation through interaction with Caf1 and a general RNA-binding protein, PABPC1. Here, we focus on the role of Tob in the regulation of specific mRNA. We show that Tob binds directly to a sequence-specific RNA-binding protein, cytoplasmic polyadenylation element-binding protein 3 (CPEB3). CPEB3 negatively regulates the expression of a target by accelerating deadenylation and decay of its mRNA, which it achieves by tethering to the mRNA. The carboxyl-terminal RNA-binding domain of CPEB3 binds to the carboxyl-terminal unstructured region of Tob. Tob then binds Caf1 deadenylase and recruits it to CPEB3 to form a ternary complex. The CPEB3-accelerated deadenylation was abrogated by a dominant-negative mutant of either Caf1 or Tob. Together, these results indicate that Tob mediates the recruitment of Caf1 to the target of CPEB3 and elicits deadenylation and decay of the mRNA. Our results provide an explanation of how Tob regulates specific biological processes.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo
16.
J Biol Chem ; 285(36): 27624-31, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20595394

RESUMO

Translation termination-coupled deadenylation is the first and often the rate-limiting step of eukaryotic mRNA decay in which two deadenylases, Ccr4-Caf1 and Pan2, play key roles. One of the deadenylases, Caf1, associates with Tob, which recruits Caf1 to the poly(A) tail through interactions with a cytoplasmic poly(A)-binding protein 1 (PABPC1). We previously proposed that the competition between Tob and eRF3 (a translation termination factor that interacts with PABPC1) is responsible for the regulation of deadenylase activity. However, the molecular mechanism of the regulation should be addressed by investigating the binding affinity and the cellular levels of these proteins. In this work, we characterized the human Tob interactions with Caf1 and a C-terminal domain of PABPC1 (PABC). Nuclear magnetic resonance (NMR) and Western blot analyses revealed that Tob consists of a structured N-terminal BTG-Tob domain and an unstructured C-terminal region with two conserved PAM2 (PABPC1-interacting motif 2) motifs. The BTG-TOB domain associates with Caf1, whereas the C-terminal PAM2 motif binds to PABC, with a K(d) value of 20 microM. Furthermore, we demonstrated that the levels of eRF3 and Tob in HeLa cells are 4-5 microM and less than 0.2 microM, respectively. On the basis of these results, we propose a thermodynamic mechanism for the translation termination-coupled deadenylation mediated by the Tob-Caf1 complex.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Fenômenos Químicos , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Espaço Intracelular/metabolismo , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteína I de Ligação a Poli(A)/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Termodinâmica , Proteínas Supressoras de Tumor/química
18.
J Biol Chem ; 278(40): 38699-706, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12865429

RESUMO

Smac/Diablo and HtrA2/Omi are inhibitors of apoptosis (IAP)-binding proteins released from the mitochondria of human cells during apoptosis and regulate apoptosis by liberating caspases from IAP inhibition. Here we describe the identification of a proteolytically processed isoform of the polypeptide chain-releasing factor GSPT1/eRF3 protein, which functions in translation, as a new IAP-binding protein. In common with other IAP-binding proteins, the processed GSPT1 protein harbors a conserved N-terminal IAP-binding motif (AKPF). Additionally, processed GSPT1 interacts biochemically with IAPs and could promote caspase activation, IAP ubiquitination and apoptosis. The IAP-binding motif of the processed GSPT1 is absolutely required for these activities. Our findings are consistent with a model whereby processing of GSPT1 into the IAP-binding isoform could potentiate apoptosis by liberating caspases from IAP inhibition, or target IAPs and the processed GSPT1 for proteasome-mediated degradation.


Assuntos
Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoptose , Western Blotting , Caspases/metabolismo , Linhagem Celular , Clonagem Molecular , Cisteína Endopeptidases/metabolismo , Grupo dos Citocromos c/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Epitopos/química , Glutationa Transferase/metabolismo , Humanos , Microscopia Confocal , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA