Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 96(3): 378-385, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962216

RESUMO

BACKGROUND: Thromboelastographic measures of clot strength increase early after injury, portending higher risks for thromboembolic complications during recovery. Understanding the specific role of platelets is challenging because of a lack of clinically relevant measures of platelet function. Platelet mitochondrial respirometry may provide insight to global platelet function but has not yet been correlated with functional coagulation studies. METHODS: Wistar rats underwent anesthesia and either immediate sacrifice for baseline values (n = 6) or (1) bilateral hindlimb orthopedic injury (n = 12), versus (2) sham anesthesia (n = 12) with terminal phlebotomy/hepatectomy after 24 hours. High-resolution respirometry was used to measure basal respiration, mitochondrial leak, maximal oxidative phosphorylation, and Complex IV activity in intact platelets; Complex I- and Complex II-driven respiration was measured in isolated liver mitochondria. Results were normalized to platelet number and protein mass, respectively. Citrated native thromboelastography (TEG) was performed in triplicate. RESULTS: Citrated native TEG maximal amplitude was significantly higher (81.0 ± 3.0 vs. 73.3 ± 3.5 mm, p < 0.001) in trauma compared with sham rats 24 hours after injury. Intact platelets from injured rats had higher basal oxygen consumption (17.7 ± 2.5 vs. 15.1 ± 3.2 pmol O 2 /[s × 10 8 cells], p = 0.045), with similar trends in mitochondrial leak rate ( p = 0.19) when compared with sham animals. Overall, platelet basal respiration significantly correlated with TEG maximal amplitude ( r = 0.44, p = 0.034). As a control for sex-dependent systemic mitochondrial differences, females displayed higher liver mitochondria Complex I-driven respiration (895.6 ± 123.7 vs. 622.1 ± 48.7 mmol e - /min/mg protein, p = 0.02); as a control for systemic mitochondrial effects of injury, no liver mitochondrial respiration differences were seen. CONCLUSION: Platelet mitochondrial basal respiration is increased after injury and correlates with clot strength in this rodent hindlimb fracture model. Several mitochondrial-targeted therapeutics exist in common use that are underexplored but hold promise as potential antithrombotic adjuncts that can be sensitively evaluated in this preclinical model.


Assuntos
Fraturas Ósseas , Roedores , Feminino , Animais , Ratos , Ratos Wistar , Mitocôndrias/metabolismo , Plaquetas/metabolismo , Hemostasia , Tromboelastografia/métodos
2.
Biol Sex Differ ; 13(1): 45, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986388

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS), characterized by androgen excess and ovulatory dysfunction, is associated with a high prevalence of obesity and insulin resistance (IR) in women. We demonstrated that sodium-glucose cotransporter-2 inhibitor (SGLT2i) administration decreases fat mass without affecting IR in the PCOS model. In male models of IR, administration of SGLT2i decreases oxidative stress and improves mitochondrial function in white adipose tissue (WAT). Therefore, we hypothesized that SGLT2i reduces adiposity via improvement in mitochondrial function and oxidative stress in WAT in PCOS model. METHODS: Four-week-old female rats were treated with dihydrotestosterone for 90 days (PCOS model), and SGLT2i (empagliflozin) was co-administered during the last 3 weeks. Body composition was measured before and after SGLT2i treatment by EchoMRI. Subcutaneous (SAT) and visceral (VAT) WAT were collected for histological and molecular studies at the end of the study. RESULTS: PCOS model had an increase in food intake, body weight, body mass index, and fat mass/lean mass ratio compared to the control group. SGLT2i lowered fat mass/lean ratio in PCOS. Glucosuria was observed in both groups, but had a larger magnitude in controls. The net glucose balance was similar in both SGLT2i-treated groups. The PCOS SAT had a higher frequency of small adipocytes and a lower frequency of large adipocytes. In SAT of controls, SGLT2i increased frequencies of small and medium adipocytes while decreasing the frequency of large adipocytes, and this effect was blunted in PCOS. In VAT, PCOS had a lower frequency of small adipocytes while SGLT2i increased the frequency of small adipocytes in PCOS. PCOS model had decreased mitochondrial content in SAT and VAT without impacting oxidative stress in WAT or the circulation. SGLT2i did not modify mitochondrial function or oxidative stress in WAT in both treated groups. CONCLUSIONS: Hyperandrogenemia in PCOS causes expansion of WAT, which is associated with decreases in mitochondrial content and function in SAT and VAT. SGLT2i increases the frequency of small adipocytes in VAT only without affecting mitochondrial dysfunction, oxidative stress, or IR in the PCOS model. SGLT2i decreases adiposity independently of adipose mitochondrial and oxidative stress mechanisms in the PCOS model.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome do Ovário Policístico , Inibidores do Transportador 2 de Sódio-Glicose , Tecido Adiposo Branco , Animais , Feminino , Glucose , Humanos , Resistência à Insulina/fisiologia , Masculino , Mitocôndrias , Obesidade , Estresse Oxidativo , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
3.
Biol Sex Differ ; 12(1): 58, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727994

RESUMO

Women with preeclampsia (PE) have a greater risk of developing hypertension, cardiovascular disease (CVD), and renal disease later in life. Angiotensin II type I receptor agonistic autoantibodies (AT1-AAs) are elevated in women with PE during pregnancy and up to 2-year postpartum (PP), and in the reduced uterine perfusion pressure (RUPP) rat model of PE. Blockade of AT1-AA with a specific 7 amino acid peptide binding sequence ('n7AAc') improves pathophysiology observed in RUPP rats; however, the long-term effects of AT1-AA inhibition in PP is unknown. Pregnant Sprague Dawley rats were divided into three groups: normal pregnant (NP) (n = 16), RUPP (n = 15), and RUPP + 'n7AAc' (n = 16). Gestational day 14, RUPP surgery was performed and 'n7AAc' (144 µg/day) administered via osmotic minipump. At 10-week PP, mean arterial pressure (MAP), renal glomerular filtration rate (GFR) and cardiac functions, and cardiac mitochondria function were assessed. MAP was elevated PP in RUPP vs. NP (126 ± 4 vs. 116 ± 3 mmHg, p < 0.05), but was normalized in in RUPP + 'n7AAc' (109 ± 3 mmHg) vs. RUPP (p < 0.05). PP heart size was reduced by RUPP + 'n7AAc' vs. RUPP rats (p < 0.05). Complex IV protein abundance and enzymatic activity, along with glutamate/malate-driven respiration (complexes I, III, and IV), were reduced in the heart of RUPP vs. NP rats which was prevented with 'n7AAc'. AT1-AA inhibition during pregnancy not only improves blood pressure and pathophysiology of PE in rats during pregnancy, but also long-term changes in blood pressure, cardiac hypertrophy, and cardiac mitochondrial function PP.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Autoanticorpos/farmacologia , Hipertensão , Mitocôndrias Cardíacas/fisiologia , Pré-Eclâmpsia , Animais , Feminino , Hipertensão/tratamento farmacológico , Placenta , Período Pós-Parto , Pré-Eclâmpsia/tratamento farmacológico , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina
4.
Nature ; 557(7703): 123-126, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695868

RESUMO

Alternative complex III (ACIII) is a key component of the respiratory and/or photosynthetic electron transport chains of many bacteria1-3. Like complex III (also known as the bc1 complex), ACIII catalyses the oxidation of membrane-bound quinol and the reduction of cytochrome c or an equivalent electron carrier. However, the two complexes have no structural similarity4-7. Although ACIII has eluded structural characterization, several of its subunits are known to be homologous to members of the complex iron-sulfur molybdoenzyme (CISM) superfamily 8 , including the proton pump polysulfide reductase9,10. We isolated the ACIII from Flavobacterium johnsoniae with native lipids using styrene maleic acid copolymer11-14, both as an independent enzyme and as a functional 1:1 supercomplex with an aa3-type cytochrome c oxidase (cyt aa3). We determined the structure of ACIII to 3.4 Å resolution by cryo-electron microscopy and constructed an atomic model for its six subunits. The structure, which contains a [3Fe-4S] cluster, a [4Fe-4S] cluster and six haem c units, shows that ACIII uses known elements from other electron transport complexes arranged in a previously unknown manner. Modelling of the cyt aa3 component of the supercomplex revealed that it is structurally modified to facilitate association with ACIII, illustrating the importance of the supercomplex in this electron transport chain. The structure also resolves two of the subunits of ACIII that are anchored to the lipid bilayer with N-terminal triacylated cysteine residues, an important post-translational modification found in numerous prokaryotic membrane proteins that has not previously been observed structurally in a lipid bilayer.


Assuntos
Microscopia Crioeletrônica , Grupo dos Citocromos c/química , Grupo dos Citocromos c/ultraestrutura , Citocromos a3/química , Citocromos a3/ultraestrutura , Citocromos a/química , Citocromos a/ultraestrutura , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Flavobacterium/enzimologia , Cisteína/química , Cisteína/metabolismo , Grupo dos Citocromos c/metabolismo , Citocromos a/metabolismo , Citocromos a3/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/análogos & derivados , Heme/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Menopause ; 24(4): 426-436, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27801704

RESUMO

OBJECTIVE: Although women are the most common recipients of weight loss surgeries for the amelioration of the comorbidities of obesity, few studies have addressed the efficacy of these procedures with specific attention to reproductive stage. Here we ask in a rodent model of vertical sleeve gastrectomy (VSG) whether improvements to metabolic health are realized in women having received surgical menopause. Specifically we were interested in knowing whether rats made menopausal through surgical means would exhibit persistent hepatic steatosis as reported in previously pregnant, freely cycling female VSG rats or if it is resolved as reported in male VSG rats. METHODS: All the rats first received ovariectomy (OVX) and then were placed on high-fat diet before either sham or VSG surgery (N = 12, 9) and then were monitored for resolution of obesity-related comorbidities. RESULTS: VSG was sufficient to reduce weight and adiposity in OVX females in comparison to obese rats (P < 0.001). Glucose tolerance (P < 0.05) was improved in OVX-VSG females with no change in insulin sensitivity. Both circulating (P < 0.01) and hepatic triglyceride (P < 0.01) levels were also reduced after VSG. Liver integrity was improved in OVX-VSG in comparison to OVX-obese as reflected by reduced aspartate aminotransferase levels (P < 0.05). The ability of mitochondria to generate adenosine triphosphate was maintained, and an increase in complex IV may decrease the production of mitochondrial reactive oxygen species. CONCLUSIONS: Taken together, VSG in OVX rats experience many positive benefits including the resolution of hepatic steatosis that persists in reproductively intact female rats after VSG.


Assuntos
Cirurgia Bariátrica/métodos , Fígado Gorduroso/etiologia , Gastrectomia/métodos , Obesidade/complicações , Obesidade/cirurgia , Ovariectomia , Trifosfato de Adenosina/biossíntese , Adiposidade , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Fígado/metabolismo , Fígado/patologia , Menopausa , Mitocôndrias Hepáticas/metabolismo , Obesidade/metabolismo , Ratos , Ratos Long-Evans , Triglicerídeos/metabolismo , Redução de Peso
6.
Am J Physiol Renal Physiol ; 309(8): F731-43, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26290368

RESUMO

We investigated obesity-induced changes in kidney lipid accumulation, mitochondrial function, and endoplasmic reticulum (ER) stress in the absence of hypertension, and the potential role of leptin in modulating these changes. We compared two normotensive genetic mouse models of obesity, leptin-deficient ob/ob mice and hyperleptinemic melanocortin-4 receptor-deficient mice (LoxTB MC4R-/-), with their respective lean controls. Compared with controls, ob/ob and LoxTB MC4R-/- mice exhibit significant albuminuria, increased creatinine clearance, and high renal triglyceride content. Renal ATP levels were decreased in both obesity models, and mitochondria isolated from both models showed alterations that would lower mitochondrial ATP production. Mitochondria from hyperleptinemic LoxTB MC4R-/- mice kidneys respired NADH-generating substrates (including palmitate) at lower rates due to an apparent decrease in complex I activity, and these mitochondria showed oxidative damage. Kidney mitochondria of leptin-deficient ob/ob mice showed normal rates of respiration with no evidence of oxidative damage, but electron transfer was partially uncoupled from ATP synthesis. A fourfold induction of C/EBP homologous protein (CHOP) expression indicated induction of ER stress in kidneys of hyperleptinemic LoxTB MC4R-/- mice. In contrast, ER stress was not induced in kidneys of leptin-deficient ob/ob mice. Our findings show that obesity, in the absence of hypertension, is associated with renal dysfunction in mice but not with major renal injury. Alterations to mitochondria that lower cellular ATP levels may be involved in obesity-induced renal injury. The type and severity of mitochondrial and ER dysfunction differs depending upon the presence or absence of leptin.


Assuntos
Retículo Endoplasmático/patologia , Rim/patologia , Leptina/genética , Leptina/metabolismo , Mitocôndrias/patologia , Obesidade/patologia , Trifosfato de Adenosina/metabolismo , Animais , Pressão Sanguínea , Estresse do Retículo Endoplasmático , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Carbonilação Proteica/genética , Receptor Tipo 4 de Melanocortina/genética , Triglicerídeos/metabolismo
7.
Cytokine ; 66(1): 7-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24548419

RESUMO

STAT3 has been implicated in mitochondrial function; however, the physiological relevance of this action is not established. Here we studied the importance of STAT3 to the cellular response to stimuli, TNFα and serum deprivation, which increase mitochondrial reactive oxygen species (ROS) formation. Experiments were performed using wild type (WT) and STAT3 knockout (KO) mouse embryonic fibroblasts (MEF). Both WT and STAT3 KO MEF expressed similar levels of tumor necrosis factor receptor 1 (TNFR1) and exhibited comparable IκBα degradation with TNFα. However, in the absence of STAT3 nuclear accumulation of NFκB p65 with TNFα was attenuated and induction of the survival protein c-FLIPL was eliminated. Nonetheless, WT MEF were more sensitive to TNFα-induced death which was attributed to necrosis. Deletion of STAT3 decreased ROS formation induced by TNFα and serum deprivation. STAT3 deletion was associated with lower levels of complex I and rates of respiration. Relative to WT cells, mitochondria of STAT3 KO cells released significantly more cytochrome c in response to oxidative stress and had greater caspase 3 cleavage due to serum deprivation. Our findings are consistent with STAT3 being important for mitochondrial function and cell viability by ensuring mitochondrial integrity and the expression of pro-survival genes.


Assuntos
Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/metabolismo , Animais , Caspase 3/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citoproteção/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
8.
Biochemistry ; 49(27): 5651-61, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20524628

RESUMO

The Cu(I) chaperone Cox11 is required for the insertion of Cu(B) into cytochrome c oxidase (CcO) of mitochondria and many bacteria, including Rhodobacter sphaeroides. Exploration of the copper binding stoichiometry of R. sphaeroides Cox11 led to the finding that an apparent tetramer of both mitochondrial and bacterial Cox11 binds more copper than the sum of the dimers, providing another example of the flexibility of copper binding by Cu(I)-S clusters. Site-directed mutagenesis has been used to identify components of Cox11 that are not required for copper binding but are absolutely required for the assembly of Cu(B), including conserved Cys-35 and Lys-123. In contrast to earlier proposals, Cys-35 is not required for dimerization of Cox11 or for copper binding. These findings, and the location of Cys-35 at the C-terminus of the predicted transmembrane helix and thereby close to the surface of the membrane, allow a proposal that Cys-35 is involved in the transfer of copper from the Cu(I) cluster of Cox11 to the Cu(B) ligands His-333 and His-334 during the folding of CcO subunit I. Lys-123 is located near the Cu(I) cluster of Cox11, in an area otherwise devoid of charged residues. From the analysis of several Cox11 mutants, including K123E, -L, and -R, we conclude that a previous proposal that Lys-123 provides charge balance for the stabilization of the Cu(I) cluster is unlikely to account for its absolute requirement for Cox11 function. Rather, consideration of the properties of Lys-123 and the apparent specificity of Cox11 suggest that Lys-123 plays a role in the interaction of Cox11 with its target.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Rhodobacter sphaeroides/genética , Cobre/química , Cisteína/genética , Cisteína/metabolismo , Dimerização , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ligantes , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Mutagênicos , Estrutura Secundária de Proteína/genética , Rhodobacter sphaeroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA