Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 177: 431-443, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307478

RESUMO

The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Terapia Fototérmica , Catálise , Glucose , Glucose Oxidase , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Med Res Rev ; 43(5): 1809-1830, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102375

RESUMO

Boron neutron capture therapy (BNCT) is one of the most promising treatments among neutron capture therapies due to its long-term clinical application and unequivocally obtained success during clinical trials. Boron drug and neutron play an equivalent crucial role in BNCT. Nevertheless, current clinically used l-boronophenylalanine (BPA) and sodium borocaptate (BSH) suffer from large uptake dose and low blood to tumor selectivity, and that initiated overwhelm screening of next generation of BNCT agents. Various boron agents, such as small molecules and macro/nano-vehicles, have been explored with better success. In this featured article, different types of agents are rationally analyzed and compared, and the feasible targets are shared to present a perspective view for the future of BNCT in cancer treatment. This review aims at summarizing the current knowledge of a variety of boron compounds, reported recently, for the application of BCNT.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Compostos de Boro/uso terapêutico
3.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108137

RESUMO

New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.


Assuntos
Terapia por Captura de Nêutron de Boro , Glioma , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Ligantes , Internalização do Vírus , Compostos de Boro/farmacologia
4.
Cancer Biother Radiopharm ; 38(3): 160-172, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36350709

RESUMO

This proceeding article compiles current research on the development of boron delivery drugs for boron neutron capture therapy that was presented and discussed at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy that took place on April 20-22, 2022. The most used boron sources are icosahedral boron clusters attached to peptides, proteins (such as albumin), porphyrin derivatives, dendrimers, polymers, and nanoparticles, or encapsulated into liposomes. These boron clusters and/or carriers can be labeled with contrast agents allowing for the use of imaging techniques, such as PET, SPECT, and fluorescence, that enable quantification of tumor-localized boron and their use as theranostic agents.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Boro/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Lipossomos , Meios de Contraste , Terapia por Captura de Nêutron de Boro/métodos
5.
Med Rev (2021) ; 3(5): 425-443, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38283251

RESUMO

Boron neutron capture therapy (BNCT) is a potential radiation therapy modality for cancer, and tumor-targeted stable boron-10 (10B) delivery agents are an important component of BNCT. Currently, two low-molecular-weight boron-containing compounds, sodium mercaptoundecahydro-closo-dodecaborate (BSH) and boronophenylalanine (BPA), are mainly used in BNCT. Although both have suboptimal tumor selectivity, they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors. To improve the efficacy of BNCT, great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles. This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people's interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.

6.
Mater Today Bio ; 16: 100450, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267139

RESUMO

Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.

7.
Sci Rep ; 12(1): 17404, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258012

RESUMO

There are two major problems in proton therapy. (1) In comparison with the gamma-ray therapy, proton therapy has only ~ 10% greater biological effectiveness, and (2) the risk of the secondary neutrons in proton therapy is another unsolved problem. In this report, the increase of biological effectiveness in proton therapy has been evaluated with better performance than 11B in the presence of two proposed nanomaterials of 157GdF4 and 157Gd doped carbon with the thermal neutron reduction due to the presence of 157Gd isotope. The present study is based on the microanalysis calculations using GEANT4 Monte Carlo tool and GEANT4-DNA package for the strand breaks measurement. It was found that the proposed method will increase the effectiveness corresponding to the alpha particles by more than 100% and also, potentially will decrease the thermal neutrons fluence, significantly. Also, in this work, a discussion is presented on a significant contribution of the secondary alpha particles in total effectiveness in proton therapy.


Assuntos
Nanopartículas , Terapia com Prótons , Terapia com Prótons/métodos , Prótons , Carbono , Nêutrons , Método de Monte Carlo , DNA , Dosagem Radioterapêutica
8.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565972

RESUMO

A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure-activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer's agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.


Assuntos
Boranos , Boro , Boro/química , Compostos de Boro/química , Bortezomib , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos
9.
ACS Omega ; 7(7): 5864-5869, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224347

RESUMO

Boron nanoparticles (BNPs), functionalized with hydroxyl groups, were synthesized in situ by a cascade process, followed by bromination and hydrolyzation reactions. These functionalized BNPs, (B m (OH) n ), were characterized using 1H and 11B NMR spectra, Fourier-transform infrared (FT-IR) spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS) methods. These nanoparticles were also evaluated in vitro for their antimalarial activity against Plasmodium falciparum (3D7 strain) with an IC50 value of 0.0021 µM and showed low toxicity to Uppsala 87 malignant glioma (U87MG) cell lines, malignant melanoma A375 cell lines, KB human oral cancer cell lines, rat cortical neuron cell lines, and rat fibroblast-like synoviocyte (FLS) cell lines.

10.
Chem Commun (Camb) ; 57(79): 10174-10177, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34528644

RESUMO

Carboxyboranylamino ethanol (Me2N(BH2CO2H)CH2CH2OH, 1) was prepared in 75.0% yield by an amine-exchange reaction. Compound 1 shows lower cytotoxicity and higher anti-tumor efficacy in vitro towards the SCCVII cell line in comparison with 4-borono-L-phenylalanine (BPA) and methyl 2-hydroxyl-5-(1'-ortho-carbonylmethyl-1',2',3'-triazol-4'-yl)-benzonate (2). The bio-enhancement is interpreted using molecular docking calculations.


Assuntos
Amino Álcoois/farmacologia , Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Terapia por Captura de Nêutron de Boro , Carcinoma de Células Escamosas/tratamento farmacológico , Descoberta de Drogas , Amino Álcoois/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/química , Linhagem Celular Tumoral , Camundongos , Simulação de Acoplamento Molecular
11.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072937

RESUMO

The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.


Assuntos
Boro/química , Boro/metabolismo , Boro/farmacologia , Antibacterianos/farmacologia , Antiparasitários/farmacologia , Terapia por Captura de Nêutron de Boro/métodos , Terapia por Captura de Nêutron de Boro/tendências , Bortezomib/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Criptosporidiose/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Eczema/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Malária/tratamento farmacológico , Onicomicose/tratamento farmacológico , Toxoplasmose/tratamento farmacológico , Tuberculose/tratamento farmacológico
12.
J Pharm Sci ; 110(3): 1365-1373, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340534

RESUMO

Boron neutron capture therapy (BNCT) remains an important treatment arm for cancer patients with locally invasive malignant tumors. This therapy needs a significant amount of boron to deposit in cancer tissues selectively, sparing other healthy organs. Most of the liposomes contain water-soluble polyhedral boron salts stay in the core of the liposomes and have low encapsulation efficiency. Thus, modifying the polyhedral boron core to make it hydrophobic and incorporating those into the lipid layer could be one of the ways to increase drug loading and encapsulation efficiency. Additionally, a systematic study about the linker-dependent effect on drug encapsulation and drug-release is lacking, particularly for the liposomal formulation of hydrophobic-drugs. To achieve these goals, liposomal formulations of a series of lipid functionalized cobalt bis(dicarbollide) compounds have been prepared, with the linkers of different hydrophobicity. Hydrophobicity of the linkers have been evaluated through logP calculation and its effect on drug encapsulation and release have been investigated. The liposomes have shown high drug loading, excellent encapsulation efficiency, stability, and non-toxic behavior. Release experiment showed minimal release of drug from liposomes in phosphate buffer, ensuring some amount of drug, associated with liposomes, can be available to tumor tissues for Boron Neutron Capture Therapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Lipossomos , Boro , Colesterol , Cobalto , Humanos
13.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066470

RESUMO

In comparison with pristine sinomenine and carborane precursors, the calculations of molecular docking with matrix metalloproteinases (MMPs) and methylcarboranyl-n-butyl sinomenine showed improved interactions. Accordingly, methylcarboranyl-n-butyl sinomenine shows a high potential in the treatment of rheumatoid arthritis (RA) in the presence of slow neutrons. The reaction of potassium salt of sinomenie, which is generated from the deprotonation of sinomenine (1) using potassium carbonate in a solvent of N,N-dimethyl formamide, with 4-methylcarboranyl-n-butyl iodide, (2) forms methylcarboranyl-n-butyl sinomenine (3) in 54.3% yield as a new product. This new compound was characterized by 1H, 13C, and 11B NMR spectroscopy, FT-IR spectroscopy, and elemental analyses to confirm its molecular composition. In addition to molecular docking interactions with MMPs, the in vitro killing effects of 3, along with its toxicity measurements, exhibited its potential to be the new drug delivery agent for boron neutron capture synovectomy (BNCS) and boron neutron capture therapy (BNCT) for the treatment of rheumatoid arthritis (RA) and cancers in the presence of slow neutrons, respectively.


Assuntos
Antineoplásicos/química , Antirreumáticos/química , Antirreumáticos/farmacologia , Terapia por Captura de Nêutron de Boro/métodos , Morfinanos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antirreumáticos/síntese química , Boro/farmacocinética , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância Magnética , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Sinoviócitos/efeitos dos fármacos
14.
ChemMedChem ; 15(20): 1897-1908, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32720425

RESUMO

Based on the previously reported potent and selective sulfone hydroxamate inhibitors SC-76276, SC-78080 (SD-2590), and SC-77964, potent MMP inhibitors have been designed and synthesized to append a boron-rich carborane cluster by employing click chemistry to target tumor cells that are known to upregulate gelatinases. Docking against MMP-2 suggests binding involving the hydroxamate zinc-binding group, key H-bonds by the sulfone moiety with the peptide backbone residues Leu82 and Leu83, and a hydrophobic interaction with the deep P1' pocket. The more potent of the two triazole regioisomers exhibits an IC50 of 3.7 nM versus MMP-2 and IC50 of 46 nM versus MMP-9.


Assuntos
Compostos de Boro/química , Inibidores de Metaloproteinases de Matriz/química , Compostos de Boro/síntese química , Compostos de Boro/metabolismo , Química Click , Ensaios Enzimáticos , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Ligantes , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/metabolismo , Simulação de Acoplamento Molecular , Sulfonas/síntese química , Sulfonas/química , Sulfonas/metabolismo , Zinco/química
15.
Chemistry ; 26(61): 13832-13841, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32521076

RESUMO

A series of boron-containing lipids were prepared by reactions of cyclic oxonium derivatives of polyhedron boranes and metallacarboranes (closo-dodecaborate anion, cobalt and iron bis(dicarbollides)) with amine and carboxylic acids which are derived from cholesterol. Stable liposomal formulations, on the basis of synthesized boron-containing lipids, hydrogenated soybean l-α-phosphatidylcholine and (HSPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) as excipients, were prepared and then characterized by dynamic light scattering (DLS) that revealed the formation of particles to be smaller than 200 nm in diameter. The resulting liposomal formulations showed moderate to excellent loading and entrapment efficiency, thus justifying the design of the compounds to fit in the lipid bilayer and ensuring ease of in vivo use for future application. The liposomal formulations based on cobalt and iron bis(dicarbollide)-based lipids were found to be nontoxic against both human breast normal epithelial cells MCF-10A and human breast cancer cells MCF-7.


Assuntos
Compostos de Boro , Boro , Colesterol , Lipídeos , Lipossomos , Boranos/química , Boro/química , Compostos de Boro/síntese química , Compostos de Boro/química , Colesterol/química , Humanos , Lipídeos/síntese química , Lipídeos/química , Lipídeos/farmacologia , Lipossomos/síntese química , Lipossomos/química , Lipossomos/farmacologia , Células MCF-7 , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
16.
Sci Rep ; 10(1): 5466, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214140

RESUMO

Proton therapy as a promising candidate in cancer treatment has attracted much attentions and many studies have been performed to investigate the new methods to enhance its radiation effectiveness. In this regard, two research groups have suggested that using boron isotopes will lead to a radiation effectiveness enhancement, using boron-11 agent to initiate the proton fusion reaction (P-BFT) and using boron-10 agent to capture the low energy secondary neutrons (NCEPT). Since, these two innovative methods have not been approved clinically, they have been recalculated in this report, discussed and compared between them and also with the traditional proton therapy to evaluate their impacts before the experimental investigations. The calculations in the present study were performed by Geant4 and MCNPX Monte Carlo Simulation Codes were utilized for obtaining more precision in our evaluations of these methods impacts. Despite small deviations in the results from the two MC tools for the NCEPT method, a good agreement was observed regarding the delivered dose rate to the tumor site at different depths while, for P-BFT related calculations, the GEANT4 was in agreement with the analytical calculations by means of the detailed cross-sections of proton-11B fusion. Accordingly, both the methods generate excess dose rate to the tumor several orders of magnitude lower than the proton dose rate. Also, it was found that, the P-BFT has more significant enhancement of effectiveness, when compared to the NCEPT, a method with impact strongly depended on the tumor's depth. On the other hand, the advantage of neutron risk reduction proposed by NCEPT was found to give no considerable changes in the neutron dose absorption by healthy tissues.

17.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070043

RESUMO

Boron compounds now have many applications in a number of fields, including Medicinal Chemistry. Although the uses of boron compounds in pharmacological science have been recognized several decades ago, surprisingly few are found in pharmaceutical drugs. The boron-containing compounds epitomize a new class for medicinal chemists to use in their drug designs. Carboranes are a class of organometallic compounds containing carbon (C), boron (B), and hydrogen (H) and are the most widely studied boron compounds in medicinal chemistry. Additionally, other boron-based compounds are of great interest, such as dodecaborate anions, metallacarboranes and metallaboranes. The boron neutron capture therapy (BNCT) has been utilized for cancer treatment from last decade, where chemotherapy and radiation have their own shortcomings. However, the improvement in the already existing (BPA and/or BSH) localized delivery agents or new tumor-targeted compounds are required before realizing the full clinical potential of BNCT. The work outlined in this short review addresses the advancements in boron containing compounds. Here, we have focused on the possible clinical implications of the new and improved boron-based biologically active compounds for BNCT that are reported to have in vivo and/or in vitro efficacy.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro/química , Animais , Carbono/química , Humanos , Hidrogênio/química
18.
Bioconjug Chem ; 30(9): 2264-2286, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31380621

RESUMO

Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Metais/química , Humanos
19.
Bioorg Chem ; 90: 103090, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260876

RESUMO

Reactions of closo-1-Me-2-Iodobutyl-1,2-closo-dicarborane, 1-Me-2-I(CH2)4-C2B10H10, with l-dopa methyl ester can produce carboranyl l-dopa methyl esters in 54% yield in the presence of sodium hydroxide. The appended closo-carboranes can be decapitated with sodium hydroxide in a mixed solvent of ethanol and deionized water to produce highly water-soluble carboranyl levodopa in 64% yield. All the new compounds were characterized by 1H, 13C, 11B NMR, FT-IR spectroscopy and elemental analysis. The highly water soluble carboranyl levodopa 4 shows promising efficacy of anti-tumors in vitro in the presence of slow neutron beams.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Dopaminérgicos/química , Gliossarcoma/tratamento farmacológico , Levodopa/química , Apoptose , Proliferação de Células , Gliossarcoma/patologia , Humanos , Técnicas In Vitro , Células Tumorais Cultivadas
20.
Curr Med Chem ; 26(26): 5019-5035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30182851

RESUMO

Boron-containing compounds are essential micronutrients for animals and plants despite their low-level natural occurrence. They can strengthen the cell walls of the plants and they play important role in supporting bone health. However, surprisingly, boron-containing compounds are seldom found in pharmaceutical drugs. In fact, there are no inherent disadvantages reported so far in terms of the incorporation of boron into medicines. Indeed, drugs based on boron-containing compounds, such as tavaborole (marked name Kerydin) and bortezomib (trade name Velcade) have been investigated and they are used in clinical treatment. In addition, following the advanced development of boron neutron capture therapy and a new emerging proton boron fusion therapy, more boron-containing medicinals are to be expected. This review discusses the current status and perspectives of delivery strategy for boron-containing drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA