Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 20172017.
Artigo em Inglês | MEDLINE | ID: mdl-30761385

RESUMO

PURPOSE: Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician's ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. MATERIALS AND METHODS: Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. RESULTS: The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522VUSs of interest, including a large number of kinases. Ten receptortyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. CONCLUSION: The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians' ability to make informed treatment decisions.

2.
Brief Bioinform ; 17(2): 346-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26210358

RESUMO

Next-generation sequencing platforms are widely used to discover variants associated with disease. The processing of sequencing data involves read alignment, variant calling, variant annotation and variant filtering. The standard file format to hold variant calls is the variant call format (VCF) file. According to the format specifications, any arbitrary annotation can be added to the VCF file for downstream processing. However, most downstream analysis programs disregard annotations already present in the VCF and re-annotate variants using the annotation provided by that particular program. This precludes investigators who have collected information on variants from literature or other sources from including these annotations in the filtering and mining of variants. We have developed VCF-Miner, a graphical user interface-based stand-alone tool, to mine variants and annotation stored in the VCF. Powered by a MongoDB database engine, VCF-Miner enables the stepwise trimming of non-relevant variants. The grouping feature implemented in VCF-Miner can be used to identify somatic variants by contrasting variants in tumor and in normal samples or to identify recessive/dominant variants in family studies. It is not limited to human data, but can also be extended to include non-diploid organisms. It also supports copy number or any other variant type supported by the VCF specification. VCF-Miner can be used on a personal computer or large institutional servers and is freely available for download from http://bioinformaticstools.mayo.edu/research/vcf-miner/.


Assuntos
Algoritmos , Bases de Dados Genéticas , Predisposição Genética para Doença/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interface Usuário-Computador , Sistemas de Gerenciamento de Base de Dados , Humanos , Polimorfismo de Nucleotídeo Único/genética , Software
3.
Nucleic Acids Res ; 43(2): e7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378314

RESUMO

Integrative analyses of epigenetic data promise a deeper understanding of the epigenome. Epidaurus is a bioinformatics tool used to effectively reveal inter-dataset relevance and differences through data aggregation, integration and visualization. In this study, we demonstrated the utility of Epidaurus in validating hypotheses and generating novel biological insights. In particular, we described the use of Epidaurus to (i) integrate epigenetic data from prostate cancer cell lines to validate the activation function of EZH2 in castration-resistant prostate cancer and to (ii) study the mechanism of androgen receptor (AR) binding deregulation induced by the knockdown of FOXA1. We found that EZH2's noncanonical activation function was reaffirmed by its association with active histone markers and the lack of association with repressive markers. More importantly, we revealed that the binding of AR was selectively reprogramed to promoter regions, leading to the up-regulation of hundreds of cancer-associated genes including EGFR. The prebuilt epigenetic dataset from commonly used cell lines (LNCaP, VCaP, LNCaP-Abl, MCF7, GM12878, K562, HeLa-S3, A549, HePG2) makes Epidaurus a useful online resource for epigenetic research. As standalone software, Epidaurus is specifically designed to process user customized datasets with both efficiency and convenience.


Assuntos
Epigenômica/métodos , Neoplasias da Próstata/genética , Software , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/antagonistas & inibidores , Humanos , Masculino , Complexo Repressor Polycomb 2/metabolismo , Receptores Androgênicos/metabolismo , Transativadores/metabolismo
4.
Front Oncol ; 2: 12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655260

RESUMO

KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene-gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

5.
Cancer Res ; 72(8): 1921-8, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22496456

RESUMO

Fusion genes and fusion gene products are widely employed as biomarkers and therapeutic targets in hematopoietic cancers, but their applications have yet to be appreciated in solid tumors. Here, we report the use of SnowShoes-FTD, a powerful new analytic pipeline that can identify fusion transcripts and assess their redundancy and tumor subtype-specific distribution in primary tumors. In a study of primary breast tumors, SnowShoes-FTD was used to analyze paired-end mRNA-Seq data from a panel of estrogen receptor (ER)(+), HER2(+), and triple-negative primary breast tumors, identifying tumor-specific fusion transcripts by comparison with mRNA-Seq data from nontransformed human mammary epithelial cell cultures plus the Illumina Body Map data from normal tissues. We found that every primary breast tumor that was analyzed expressed one or more fusion transcripts. Of the 131 tumor-specific fusion transcripts identified, 86 were "private" (restricted to a single tumor) and 45 were "redundant" (distributed among multiple tumors). Among the redundant fusion transcripts, 7 were unique to ER(+) tumors and 8 were unique to triple-negative tumors. In contrast, none of the redundant fusion transcripts were unique to HER2(+) tumors. Both private and redundant fusion transcripts were widely expressed in primary breast tumors, with many mapping to genomic loci implicated in breast carcinogenesis and/or risk. Our finding that some fusion transcripts are tumor subtype-specific suggests that these entities may be critical determinants in the etiology of breast cancer subtypes, useful as biomarkers for tumor stratification, or exploitable as cancer-specific therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Técnicas Genéticas , Proteínas de Fusão Oncogênica/genética , Software , Feminino , Humanos , Proteínas de Fusão Oncogênica/análise , RNA Mensageiro/análise , Receptor ErbB-2/genética , Receptores de Estrogênio/genética
6.
Oncotarget ; 3(4): 502-13, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22522905

RESUMO

Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow (BM). MM is viewed as a clonal disorder due to lack of verified intraclonal sequence diversity in the immunoglobulin heavy chain variable region gene (IGHV). However, this conclusion is based on analysis of a very limited number of IGHV subclones and the methodology employed did not permit simultaneous analysis of the IGHV repertoire of non-malignant PCs in the same samples. Here we generated genomic DNA and cDNA libraries from purified MM BMPCs and performed massively parallel pyrosequencing to determine the frequency of cells expressing identical IGHV sequences. This method provided an unprecedented opportunity to interrogate the presence of clonally related MM cells and evaluate the IGHV repertoire of non-MM PCs. Within the MM sample, 37 IGHV genes were expressed, with 98.9% of all immunoglobulin sequences using the same IGHV gene as the MM clone and 83.0% exhibiting exact nucleotide sequence identity in the IGHV and heavy chain complementarity determining region 3 (HCDR3). Of interest, we observed in both genomic DNA and cDNA libraries 48 sets of identical sequences with single point mutations in the MM clonal IGHV or HCDR3 regions. These nucleotide changes were suggestive of putative subclones and therefore were subjected to detailed analysis to interpret: 1) their legitimacy as true subclones; and 2) their significance in the context of MM. Finally, we report for the first time the IGHV repertoire of normal human BMPCs and our data demonstrate the extent of IGHV repertoire diversity as well as the frequency of clonally-related normal BMPCs. This study demonstrates the power and potential weaknesses of in-depth sequencing as a tool to thoroughly investigate the phylogeny of malignant PCs in MM and the IGHV repertoire of normal BMPCs.


Assuntos
Regiões Determinantes de Complementaridade/genética , Cadeias Pesadas de Imunoglobulinas/genética , Mieloma Múltiplo/genética , Plasmócitos/metabolismo , Análise de Sequência de DNA/métodos , Células Clonais , DNA/genética , Biblioteca Gênica , Biblioteca Genômica , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Recombinação V(D)J/genética
7.
Nucleic Acids Res ; 39(15): e100, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622959

RESUMO

SnowShoes-FTD, developed for fusion transcript detection in paired-end mRNA-Seq data, employs multiple steps of false positive filtering to nominate fusion transcripts with near 100% confidence. Unique features include: (i) identification of multiple fusion isoforms from two gene partners; (ii) prediction of genomic rearrangements; (iii) identification of exon fusion boundaries; (iv) generation of a 5'-3' fusion spanning sequence for PCR validation; and (v) prediction of the protein sequences, including frame shift and amino acid insertions. We applied SnowShoes-FTD to identify 50 fusion candidates in 22 breast cancer and 9 non-transformed cell lines. Five additional fusion candidates with two isoforms were confirmed. In all, 30 of 55 fusion candidates had in-frame protein products. No fusion transcripts were detected in non-transformed cells. Consideration of the possible functions of a subset of predicted fusion proteins suggests several potentially important functions in transformation, including a possible new mechanism for overexpression of ERBB2 in a HER-positive cell line. The source code of SnowShoes-FTD is provided in two formats: one configured to run on the Sun Grid Engine for parallelization, and the other formatted to run on a single LINUX node. Executables in PERL are available for download from our web site: http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm.


Assuntos
Neoplasias da Mama/genética , Fusão Gênica , Proteínas Mutantes Quiméricas/genética , RNA Mensageiro/química , Software , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Humanos , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA