Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27533, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496846

RESUMO

Flavonoids are organic compounds characterized by a range of phenolic structures, which are abundantly present in various natural sources such as fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine. The health advantages of these natural substances are renowned, and initiatives are being taken to extract the flavonoids. Apigenin, galangin, hesperetin, kaempferol, myricetin, naringenin, and quercetin are the seven most common compounds belonging to this class. A thorough analysis of bibliographic records from reliable sources including Google Scholar, Web of Science, PubMed, ScienceDirect, MEDLINE, and others was done to learn more about the biological activities of these flavonoids. These flavonoids appear to have promising anti-diabetic, anti-inflammatory, antibacterial, antioxidant, antiviral, cytotoxic, and lipid-lowering activities, according to evidence from in vitro, in vivo, and clinical research. The review contains recent trends, therapeutical interventions, and futuristic aspects of flavonoids to treat several diseases like diabetes, inflammation, bacterial and viral infections, cancers, and cardiovascular diseases. However, this manuscript should be handy in future drug discovery. Despite these encouraging findings, a notable gap exists in clinical research, hindering a comprehensive understanding of the effects of flavonoids at both high and low concentrations on human health. Future investigations should prioritize exploring bioavailability, given the potential for high inter-individual variation. As a starting point for further study on these flavonoids, this review paper may promote identifying and creating innovative therapeutic uses.

3.
Curr Top Med Chem ; 23(14): 1380-1393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650651

RESUMO

Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.


Assuntos
Corantes de Alimentos , Animais , Humanos , Camundongos , Aditivos Alimentares/efeitos adversos , Corantes de Alimentos/efeitos adversos , Fígado , Estados Unidos , United States Food and Drug Administration
4.
Heliyon ; 9(1): e12702, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685362

RESUMO

Plant seeds are the resources of many different bioactive components. The chemical composition of the different crude extracts from Benincasa hispida (White pumpkin) and Cucurbita moschata (Pumpkin) seeds with three different polarity-based solvents (n-hexane, n-hexane-chloroform (2:1), and methanol) was analyzed to identify the biologically active compounds. Each of the extracts was analyzed by gas chromatography-mass spectrometry. Different extracts of targeted seeds showed different biologically active compounds that have different pharmacological potentialities. 9, 12-Octadecadienoic acid (ZZ) was the most potent bioactive compound present in three different extracts of both B. hispida and C. moschata. Another bioactive compound comparatively low percentage present in both plants was n-hexadecanoic acid. Other major pharmacologically active compounds present in both plants were 9- Octadecenoic acid (Z)-, methyl ester, and 9, 12-Octadecadienoic acid methyl ester (E, E). Besides these compounds, a few more biologically active compounds were present in the two plants separately. The findings of this study support the use of these seeds in modern functional foods, nutraceuticals, and medicinal purposes, and the whole seeds would give better health benefits rather than use any extract. Although further pharmacological examinations should be carried out to conclude the medicinal application of the seeds of these two plants as well as to understand the mechanism of the potential health benefits.

5.
Front Nutr ; 9: 1038748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36778969

RESUMO

Introduction: A medicinal plant, Myristica fragrans seed meal (nutmeg), was utilized to evaluate its impact on the growth, immunity, and antioxidant defense of zebrafish (Danio rerio). Methods: In this regard, zebrafish (0.47 ± 0.04 g) (mean ± S.D.) were fed with 0% (control), 1% (T1-nutmeg), 2% (T2-nutmeg), and 3% (T3-nutmeg) of powdered nutmeg for 70 days. At the end of the feeding trial, growth performance, survival rate of fish, and temperature-challenge effects were recorded. Immune and antioxidant parameters were also assessed through the collection of serum and skin mucus samples. Results: The results indicated that nutmeg supplementation did not significantly influence the growth of zebrafish (P > 0.05); however, the survival rate of fish fed with 2 and 3% of nutmeg supplementation significantly decreased (P < 0.05). The skin mucus and serum total protein, total immunoglobulin (Ig), and lysozyme activity were significantly increased in T3-nutmeg treatment in comparison to the control (P < 0.05). Superoxide dismutase (SOD) and catalase (CAT) activities were also enhanced in the T3-nutmeg group (P < 0.05). Nutmeg supplementation significantly upregulated the mRNA expression of growth hormone (gh) and insulin growth factor-1 (igf-1). Moreover, the nutmeg inclusion upregulated the expression of interleukin-1ß (IL-1ß), lysozyme, sod, and cat. The dietary supplementation of nutmeg significantly increased the resistance of zebrafish against cold-water shock and survivability afterward (P < 0.05). Discussion: In conclusion, the supplementation of 3% powdered nutmeg in zebrafish diets could be suggested as an effective immune stimulator that improves antioxidant defense and stress tolerance.

6.
Anim Nutr ; 7(4): 1360-1370, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786509

RESUMO

Alternative sources of fish oil (FO) are one of the major problems in aquaculture; therefore, the goal of the present study was to examine insect (black soldier fly larvae) oil (BSLO) as a potential replacer of fish/soy oil in juvenile rainbow trout (initial average weight of 32 ± 0.15 g) feed. Four diets were formulated wherein FO (control diet) was completely replaced with either soybean oil (SO) or BSLO, and an additional BSLO-based diet supplemented with 1.5% bile acid (BSLO + BA) were fed to the fish for 10 weeks. Growth performance of the BSLO fed group was similar (P > 0.05) to that of the FO and SO fed groups, however, the fish fed BSLO + BA diet registered the lowest growth (P < 0.05). Oil sources did not (P > 0.05) affect the major nutrient content of whole-body, however, the fatty acid composition of the muscle and liver was influenced (P < 0.05), with the highest 14:0, 16:0, and total saturated fatty acid detected in BSLO or BSLO + BA fed trout compared to the others (P < 0.001). No significant differences were observed in eicosapentaenoic acid + docosahexaenoic acid (EPA + DHA) or total n-3 polyunsaturated fatty acid (PUFA) content in muscle among the groups, whereas, the highest EPA:DHA and n-3:n-6 ratios were detected in the FO group. Gene expression for fatty acid binding protein (fabp), fatty acid synthase (fas), and Δ5 desaturase in the liver was lower in FO (P < 0.05), while BSLO + BA registered the highest Δ6 expression (P = 0.006). Supplementation of BA in the BSLO diet increased superoxide dismutase (SOD) and catalase (CAT) activities compared to the other groups (P < 0.05). In conclusion, BSLO could serve as a substitute for FO and SO in rainbow trout diet without negatively impacting growth performance, whole-body composition and nutrient retention, and modulate the expression of fatty acid metabolism-related genes in rainbow trout.

7.
Fish Shellfish Immunol ; 109: 116-124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33352339

RESUMO

Black solider fly larvae (BSFL) and their oils (BSFLO) are receiving increasing attention as sustainable ingredients in fish feeds, but mostly as replacements to marine sources. There were two aims to this study; in exp. 1, soybean meal (SBM)-based diets were formulated to contain BSFL as supplements at 0 (SBM), 8 (SBM + BSFLlow) or 16% (SBM + BSFLhigh) with a control diet being fishmeal-based (FM). In exp. 2, diets included only fish oil (FO), soybean oil (SBO), BSFLO or BSFLO + bile acid (BA), and all lipid sources were added at 16%. Both experiments were run at the same time and fed to rainbow trout (32 g) with each treatment being triplicated. After 10 weeks the fish were sampled for liver and distal intestine histology, expression of genes responsible for inflammation in the intestine and kidneys, and serum peroxidase and lysozyme activities. In exp. 1, supplementations of BSFL effectively prevented SBM-induced intestinal enteritis, down-regulated intestinal prostaglandin and interferon regulatory factor 1 (IRF-1), while the SBM + BSFLhigh diet significantly increased serum lysozyme activity. In exp. 2, BSFLO caused no histomorphological change to the liver or intestine, but kidney interluekin-8, tumor necrosis factor and IRF-1 were significantly upregulated along with significantly higher serum peroxidase activity. The inclusion of BA in the BSFLO diets significantly upregulated intestinal prostaglandin gene expression. Overall, BSFL supplementations of 8 or 16% prevented SBM-induced intestinal enteritis based on histological observations, which was supported by a down-regulation in pro-inflammatory genes and enhanced innate immunity. Meanwhile, the use of BSFLO showed some immunological benefits. Therefore, these sustainable resources are recommended in the diets of rainbow trout, especially when using elevated levels of plant-based proteins.


Assuntos
Suplementos Nutricionais/análise , Dípteros/química , Enterite/veterinária , Doenças dos Peixes/prevenção & controle , Glycine max/efeitos adversos , Oncorhynchus mykiss/imunologia , Ração Animal/análise , Animais , Dieta/veterinária , Dípteros/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Enterite/induzido quimicamente , Enterite/prevenção & controle , Doenças dos Peixes/induzido quimicamente , Intestinos/fisiopatologia , Larva/química , Larva/crescimento & desenvolvimento
8.
Fish Shellfish Immunol ; 56: 523-533, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27514786

RESUMO

Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and lysozyme activity as a marker of immune functions for red sea bream, which is also inline with the most of the growth and health performance parameters of fish under present experimental conditions.


Assuntos
Monofosfato de Adenosina , Fenômenos Fisiológicos da Nutrição Animal/imunologia , Dieta/veterinária , Suplementos Nutricionais , Perciformes/imunologia , Ração Animal/análise , Animais , Digestão/imunologia , Metabolismo Energético/imunologia , Escherichia coli/fisiologia , Imunidade Inata/imunologia , Perciformes/crescimento & desenvolvimento , Perciformes/lesões , Distribuição Aleatória , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA