Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8019): 207-215, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926576

RESUMO

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Assuntos
Macrófagos , Oxilipinas , Piroptose , Secretoma , Cicatrização , Animais , Feminino , Humanos , Camundongos , Caspase 1/metabolismo , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Gasderminas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta , Lipidômica , Macrófagos/metabolismo , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Oxilipinas/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Secretoma/metabolismo , Cicatrização/fisiologia
2.
Cell Death Differ ; 31(8): 957-969, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38649745

RESUMO

Our skin provides a physical and immunological barrier against dehydration and environmental insults ranging from microbial attacks, toxins and UV irradiation to wounding. Proper functioning of the skin barrier largely depends on the interplay between keratinocytes- the epithelial cells of the skin- and immune cells. Two spatially distinct populations of keratinocyte stem cells (SCs) maintain the epidermal barrier function and the hair follicle. These SCs are inherently long-lived, but cell death can occur within their niches and impacts their functionality. The default cell death programme in skin is apoptosis, an orderly and non-inflammatory suicide programme. However, recent findings are shedding light on the significance of various modes of regulated necrotic cell death, which are lytic and can provoke inflammation within the local skin environment. While the presence of dying cells was generally regarded as a mere consequence of inflammation, findings in various human dermatological conditions and experimental mouse models of aberrant cell death control demonstrated that cell death programmes in keratinocytes (KCs) can drive skin inflammation and even tumour initiation. When cells die, they need to be removed by phagocytosis and KCs can function as non-professional phagocytes of apoptotic cells with important implications for their SC capacities. It is becoming apparent that in conditions of heightened SC activity, distinct cell death modalities differentially impact the different skin SC populations in their local niches. Here, we describe how regulated cell death modalities functionally affect epidermal SC niches along with their relevance to injury repair, inflammatory skin disorders and cancer.


Assuntos
Pele , Nicho de Células-Tronco , Humanos , Animais , Pele/citologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Morte Celular , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Apoptose
3.
J Control Release ; 365: 1019-1036, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065413

RESUMO

The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches. Phototherapies like photothermal therapy (PTT) have gained considerable attention in the field, mainly because of their straightforward applicability in melanoma skin cancer, combined with the fact that these strategies are able to induce immunogenic cell death (ICD), linked with a specific antitumor immune response. However, PTT comes with the risk of uncontrolled heating of the surrounding healthy tissue due to heat dissipation. Here, we used pulsed laser irradiation of endogenous melanin-containing melanosomes to induce cell killing of B16-F10 murine melanoma cells in a non-thermal manner. Pulsed laser irradiation of the B16-F10 cells resulted in the formation of water vapor nanobubbles (VNBs) around endogenous melanin-containing melanosomes, causing mechanical cell damage. We demonstrated that laser-induced VNBs are able to kill B16-F10 cells with high spatial resolution. When looking more deeply into the cell death mechanism, we found that a large part of the B16-F10 cells succumbed rapidly after pulsed laser irradiation, reaching maximum cell death already after 4 h. Practically all necrotic cells demonstrated exposure of phosphatidylserine on the plasma membrane and caspase-3/7 activity, indicative of regulated cell death. Furthermore, calreticulin, adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), three key damage-associated molecular patterns (DAMPs) in ICD, were found to be exposed from B16-F10 cells upon pulsed laser irradiation to an extent that exceeded or was comparable to the bona fide ICD-inducer, doxorubicin. Finally, we could demonstrate that VNB formation from melanosomes induced plasma membrane permeabilization. This allowed for enhanced intracellular delivery of bleomycin, an ICD-inducing chemotherapeutic, which further boosted cell death with the potential to improve the systemic antitumor immune response.


Assuntos
Melanoma Experimental , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melaninas , Linhagem Celular Tumoral , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Experimental/patologia , Morte Celular
4.
Sci Rep ; 13(1): 17992, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865713

RESUMO

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Citrulinação , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Autoimunidade/genética , Armadilhas Extracelulares/metabolismo
5.
Autophagy ; 19(11): 2958-2971, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615626

RESUMO

Macroautophagy/autophagy is a cellular recycling program regulating cell survival and controlling inflammatory responses in a context-dependent manner. Here, we demonstrate that keratinocyte-selective ablation of Atg16l1, an essential autophagy mediator, results in exacerbated inflammatory and neoplastic skin responses. In addition, mice lacking keratinocyte autophagy exhibit precocious onset of hair follicle growth, indicating altered activation kinetics of hair follicle stem cells (HFSCs). These HFSCs also exhibit expanded potencies in an autophagy-deficient context as shown by de novo hair follicle formation and improved healing of abrasion wounds. ATG16L1-deficient keratinocytes are markedly sensitized to apoptosis. Compound deletion of RIPK3-dependent necroptotic and CASP8-dependent apoptotic responses or of TNFRSF1A/TNFR1 reveals that the enhanced sensitivity of autophagy-deficient keratinocytes to TNF-dependent cell death is driving altered activation of HFSCs. Together, our data demonstrate that keratinocyte autophagy dampens skin inflammation and tumorigenesis but curtails HFSC activation by restraining apoptotic responses.Abbreviations: ATG16L1: autophagy related 16 like 1; DMBA: 2,4-dimethoxybenzaldehyde; DP: dermal papilla; EpdSCs: epidermal stem cells; Gas6: growth arrest specific 6; HF: hair follicle; HFSC: hair follicle stem cell; IFE: interfollicular epidermis; KRT5: keratin 5; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PMK: primary mouse keratinocyte; RIPK3: receptor-interacting serine-threonine kinase 3; scRNAseq: single-cell RNA-sequencing; SG: sebaceous gland; TEWL: transepidermal water loss; TPA: 12-O-tetradecanoylphorbol-13-acetate; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a; UMAP: uniform manifold approximation and projection.

6.
Science ; 378(6625): 1201-1207, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520901

RESUMO

Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia , Proteínas de Membrana , Fator de Necrose Tumoral alfa , Proteínas de Transporte Vesicular , Animais , Camundongos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Dermatite/genética , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
J Invest Dermatol ; 142(4): 1026-1031, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34600919

RESUMO

Fibroblasts have emerged as a dominant component of the tumor microenvironment, but despite the surging interest in the activation of fibroblasts and their role in cancer, they remain an elusive and complex cell type. In this perspective, we discuss the phenotypic plasticity of cancer-associated fibroblasts (CAFs) in melanoma and nonmelanoma skin cancer identified by genome-wide transcriptomic studies and focus on the molecular pathways underlying their activation. These studies reveal distinct fibroblast activation profiles depending on tumor type and stage. A better understanding of skin CAF heterogeneity in origin and function will guide novel therapeutic approaches targeting this cell type in clinical cancer care.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Cutâneas , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias Cutâneas/patologia , Transcriptoma , Microambiente Tumoral
8.
Nat Commun ; 12(1): 5913, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625556

RESUMO

OTULIN is a deubiquitinase that specifically cleaves linear ubiquitin chains. Here we demonstrate that the ablation of Otulin selectively in keratinocytes causes inflammatory skin lesions that develop into verrucous carcinomas. Genetic deletion of Tnfr1, knockin expression of kinase-inactive Ripk1 or keratinocyte-specific deletion of Fadd and Mlkl completely rescues mice with OTULIN deficiency from dermatitis and tumorigenesis, thereby identifying keratinocyte cell death as the driving force for inflammation. Single-cell RNA-sequencing comparing non-lesional and lesional skin reveals changes in epidermal stem cell identity in OTULIN-deficient keratinocytes prior to substantial immune cell infiltration. Keratinocytes lacking OTULIN display a type-1 interferon and IL-1ß response signature, and genetic or pharmacologic inhibition of these cytokines partially inhibits skin inflammation. Finally, expression of a hypomorphic mutant Otulin allele, previously shown to cause OTULIN-related autoinflammatory syndrome in humans, induces a similar inflammatory phenotype, thus supporting the importance of OTULIN for restraining skin inflammation and maintaining immune homeostasis.


Assuntos
Endopeptidases/metabolismo , Queratinócitos/metabolismo , Pele/metabolismo , Animais , Morte Celular/genética , Citocinas/metabolismo , Endopeptidases/genética , Proteína de Domínio de Morte Associada a Fas , Técnicas de Introdução de Genes , Homeostase , Inflamação/patologia , Interferon Tipo I , Interleucina-1beta , Camundongos , Necroptose , Fragmentos de Peptídeos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Pele/patologia , Células-Tronco/metabolismo , Análise de Sistemas , Ubiquitina/metabolismo
9.
Cell Rep ; 36(12): 109748, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551300

RESUMO

Obesity-induced inflammation is a major driving force in the development of insulin resistance, type 2 diabetes (T2D), and related metabolic disorders. During obesity, macrophages accumulate in the visceral adipose tissue, creating a low-grade inflammatory environment. Nuclear factor κB (NF-κB) signaling is a central coordinator of inflammatory responses and is tightly regulated by the anti-inflammatory protein A20. Here, we find that myeloid-specific A20-deficient mice are protected from diet-induced obesity and insulin resistance despite an inflammatory environment in their metabolic tissues. Macrophages lacking A20 show impaired mitochondrial respiratory function and metabolize more palmitate both in vitro and in vivo. We hypothesize that A20-deficient macrophages rely more on palmitate oxidation and metabolize the fat present in the diet, resulting in a lean phenotype and protection from metabolic disease. These findings reveal a role for A20 in regulating macrophage immunometabolism.


Assuntos
Ácidos Graxos/metabolismo , Obesidade/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Tecido Adiposo Branco/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hidroliases/genética , Hidroliases/metabolismo , Resistência à Insulina , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Consumo de Oxigênio , Palmitatos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
10.
EMBO Rep ; 22(5): e51573, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780134

RESUMO

Fibroblasts are a major component of the microenvironment of most solid tumours. Recent research elucidated a large heterogeneity and plasticity of activated fibroblasts, indicating that their role in cancer initiation, growth and metastasis is complex and context-dependent. Here, we performed genome-wide expression analysis comparing fibroblasts in normal, inflammatory and tumour-associated skin. Cancer-associated fibroblasts (CAFs) exhibit a fibrotic gene signature in wound-induced tumours, demonstrating persistent extracellular matrix (ECM) remodelling within these tumours. A top upregulated gene in mouse CAFs encodes for PRSS35, a protease capable of collagen remodelling. In human skin, we observed PRSS35 expression uniquely in the stroma of high-grade squamous cell carcinomas. Ablation of PRSS35 in mouse models of wound- or chemically-induced tumorigenesis resulted in aberrant collagen composition in the ECM and increased tumour incidence. Our results indicate that fibrotic enzymes expressed by CAFs can regulate squamous tumour initiation by remodelling the ECM.


Assuntos
Matriz Extracelular , Fibroblastos , Animais , Carcinogênese/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Fibrose , Camundongos , Pele , Microambiente Tumoral/genética
11.
Nat Immunol ; 21(4): 381-387, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205881

RESUMO

Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties.


Assuntos
Inflamação/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Epiteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Poliubiquitina/metabolismo , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Dedos de Zinco/fisiologia
12.
Cell Rep ; 30(7): 2237-2247.e6, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075762

RESUMO

Inflammatory signaling pathways are tightly regulated to avoid chronic inflammation and the development of disease. OTULIN is a deubiquitinating enzyme that controls inflammation by cleaving linear ubiquitin chains generated by the linear ubiquitin chain assembly complex. Here, we show that ablation of OTULIN in liver parenchymal cells in mice causes severe liver disease which is characterized by liver inflammation, hepatocyte apoptosis, and compensatory hepatocyte proliferation, leading to steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). Genetic ablation of Fas-associated death domain (FADD) completely rescues and knockin expression of kinase inactive receptor-interacting protein kinase 1 (RIPK1) significantly protects mice from developing liver disease, demonstrating that apoptosis of OTULIN-deficient hepatocytes triggers disease pathogenesis in this model. Finally, we demonstrate that type I interferons contribute to disease in hepatocyte-specific OTULIN-deficient mice. Our study reveals the critical importance of OTULIN in protecting hepatocytes from death, thereby preventing the development of chronic liver inflammation and HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Endopeptidases/metabolismo , Proteína de Domínio de Morte Associada a Fas/antagonistas & inibidores , Hepatite/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Apoptose/fisiologia , Células CHO , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Cricetulus , Proteína de Domínio de Morte Associada a Fas/metabolismo , Hepatite/genética , Hepatite/patologia , Humanos , Interferon Tipo I/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
13.
Nat Cancer ; 1(6): 620-634, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121975

RESUMO

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Assuntos
Carcinoma , Microbiota , Animais , Carcinoma/metabolismo , Colo/metabolismo , Camundongos
15.
Cell Rep ; 29(9): 2689-2701.e4, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775038

RESUMO

Regenerative responses predispose tissues to tumor formation by largely unknown mechanisms. High-mobility group box 1 (HMGB1) is a danger-associated molecular pattern contributing to inflammatory pathologies. We show that HMGB1 derived from keratinocytes, but not myeloid cells, delays cutaneous wound healing and drives tumor formation. In wounds of mice lacking HMGB1 selectively in keratinocytes, a marked reduction in neutrophil extracellular trap (NET) formation is observed. Pharmacological targeting of HMGB1 or NETs prevents skin tumorigenesis and accelerates wound regeneration. HMGB1-dependent NET formation and skin tumorigenesis is orchestrated by tumor necrosis factor (TNF) and requires RIPK1 kinase activity. NETs are present in the microenvironment of keratinocyte-derived tumors in mice and lesional and tumor skin of patients suffering from recessive dystrophic epidermolysis bullosa, a disease in which skin blistering predisposes to tumorigenesis. We conclude that tumorigenicity of the wound microenvironment depends on epithelial-derived HMGB1 regulating NET formation, thereby establishing a mechanism linking reparative inflammation to tumor initiation.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Pele/patologia , Proteína HMGB1/metabolismo , Humanos , Microambiente Tumoral , Cicatrização
16.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886049

RESUMO

Mutations in Lef1 occur in human and mouse sebaceous gland (SG) tumors, but their contribution to carcinogenesis remains unclear. Since Gata6 controls lineage identity in SG, we investigated the link between these two transcription factors. Here, we show that Gata6 is a ß-catenin-independent transcriptional target of mutant Lef1. During epidermal development, Gata6 is expressed in a subset of Sox9-positive Lef1-negative hair follicle progenitors that give rise to the upper SG Overexpression of Gata6 by in utero lentiviral injection is sufficient to induce ectopic sebaceous gland elements. In mice overexpressing mutant Lef1, Gata6 ablation increases the total number of skin tumors yet decreases the proportion of SG tumors. The increased tumor burden correlates with impaired DNA mismatch repair and decreased expression of Mlh1 and Msh2 genes, defects frequently observed in human sebaceous neoplasia. Gata6 specifically marks human SG tumors and also defines tumors with elements of sebaceous differentiation, including a subset of basal cell carcinomas. Our findings reveal that Gata6 controls sebaceous gland development and cancer.


Assuntos
Fator de Transcrição GATA6/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Neoplasias das Glândulas Sebáceas/patologia , Neoplasias Cutâneas/patologia , Células-Tronco/patologia , Animais , Proliferação de Células , Dano ao DNA , Feminino , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Masculino , Camundongos , Camundongos Knockout , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mutação , Neoplasias das Glândulas Sebáceas/genética , Neoplasias das Glândulas Sebáceas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Células-Tronco/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
Nat Commun ; 9(1): 2951, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054470

RESUMO

Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.


Assuntos
Neoplasias da Mama/metabolismo , Macrófagos/metabolismo , Metástase Neoplásica , Cicatrização/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno/metabolismo , Citocinas/metabolismo , Endopeptidases , Feminino , Gelatinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Fenótipo , Prognóstico , Serina Endopeptidases/metabolismo , Pele/metabolismo , Microambiente Tumoral/fisiologia
18.
Nat Commun ; 9(1): 2036, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29789522

RESUMO

Microglia, the mononuclear phagocytes of the central nervous system (CNS), are important for the maintenance of CNS homeostasis, but also critically contribute to CNS pathology. Here we demonstrate that the nuclear factor kappa B (NF-κB) regulatory protein A20 is crucial in regulating microglia activation during CNS homeostasis and pathology. In mice, deletion of A20 in microglia increases microglial cell number and affects microglial regulation of neuronal synaptic function. Administration of a sublethal dose of lipopolysaccharide induces massive microglia activation, neuroinflammation, and lethality in mice with microglia-confined A20 deficiency. Microglia A20 deficiency also exacerbates multiple sclerosis (MS)-like disease, due to hyperactivation of the Nlrp3 inflammasome leading to enhanced interleukin-1ß secretion and CNS inflammation. Finally, we confirm a Nlrp3 inflammasome signature and IL-1ß expression in brain and cerebrospinal fluid from MS patients. Collectively, these data reveal a critical role for A20 in the control of microglia activation and neuroinflammation.


Assuntos
Inflamassomos/imunologia , Microglia/imunologia , Esclerose Múltipla/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Transdução de Sinais/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia
19.
Front Immunol ; 9: 93, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449841

RESUMO

In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.


Assuntos
Microambiente Celular , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Alérgenos/imunologia , Animais , Biomarcadores , Dermatite/etiologia , Dermatite/metabolismo , Dermatite/patologia , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Imunidade Inata , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Cicatrização/imunologia
20.
J Allergy Clin Immunol ; 140(5): 1364-1377.e2, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28189772

RESUMO

BACKGROUND: Exposure to allergens, such as house dust mite (HDM), through the skin often precedes allergic inflammation in the lung. It was proposed that TH2 sensitization through the skin occurs when skin barrier function is disrupted by, for example, genetic predisposition, mechanical damage, or the enzymatic activity of allergens. OBJECTIVE: We sought to study how HDM applied to unmanipulated skin leads to TH2 sensitization and to study which antigen-presenting cells mediate this process. METHODS: HDM was applied epicutaneously by painting HDM on unmanipulated ear skin or under an occlusive tape. HDM challenge was through the nose. Mouse strains lacking different dendritic cell (DC) populations were used, and 1-DER T cells carrying a transgenic T-cell receptor reactive to Der p 1 allergen were used as a readout for antigen presentation. The TH2-inducing capacity of sorted skin-derived DC subsets was determined by means of adoptive transfer to naive mice. RESULTS: Epicutaneous HDM application led to TH2 sensitization and eosinophilic airway inflammation upon intranasal HDM challenge. Skin sensitization did not require prior skin damage or enzymatic activity within HDM extract, yet was facilitated by applying the allergen under an occlusive tape. Primary proliferation of 1-DER T cells occurred only in the regional skin-draining lymph nodes. Epicutaneous sensitization was found to be driven by 2 variants of interferon regulatory factor 4-dependent dermal type 2 conventional DC subsets and not by epidermal Langerhans cells. CONCLUSION: These findings identify skin type 2 conventional DCs as crucial players in TH2 sensitization to common inhaled allergens that enter the body through the skin and can provoke features of allergic asthma.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Fatores Reguladores de Interferon/metabolismo , Células de Langerhans/imunologia , Pele/imunologia , Animais , Apresentação de Antígeno , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Células Cultivadas , Cisteína Endopeptidases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pyroglyphidae/imunologia , Receptores de Antígenos de Linfócitos T/genética , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA