Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 718, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759618

RESUMO

Inorganic polyphosphate (polyP) is an ancient energy metabolite and phosphate store that occurs ubiquitously in all organisms. The vacuolar transporter chaperone (VTC) complex integrates cytosolic polyP synthesis from ATP and polyP membrane translocation into the vacuolar lumen. In yeast and in other eukaryotes, polyP synthesis is regulated by inositol pyrophosphate (PP-InsP) nutrient messengers, directly sensed by the VTC complex. Here, we report the cryo-electron microscopy structure of signal-activated VTC complex at 3.0 Å resolution. Baker's yeast VTC subunits Vtc1, Vtc3, and Vtc4 assemble into a 3:1:1 complex. Fifteen trans-membrane helices form a novel membrane channel enabling the transport of newly synthesized polyP into the vacuolar lumen. PP-InsP binding orients the catalytic polymerase domain at the entrance of the trans-membrane channel, both activating the enzyme and coupling polyP synthesis and membrane translocation. Together with biochemical and cellular studies, our work provides mechanistic insights into the biogenesis of an ancient energy metabolite.


Assuntos
Polifosfatos , Saccharomyces cerevisiae , Polifosfatos/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Canais Iônicos/metabolismo
2.
J Biol Chem ; 298(11): 102438, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049521

RESUMO

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polifosfatos , Metaloproteínas/química , Hidrolases Anidrido Ácido/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(5): 2693-2703, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964818

RESUMO

Plants use leucine-rich repeat receptor kinases (LRR-RKs) to sense sequence diverse peptide hormones at the cell surface. A 3.0-Å crystal structure of the LRR-RK GSO1/SGN3 regulating Casparian strip formation in the endodermis reveals a large spiral-shaped ectodomain. The domain provides a binding platform for 21 amino acid CIF peptide ligands, which are tyrosine sulfated by the tyrosylprotein sulfotransferase TPST/SGN2. GSO1/SGN3 harbors a binding pocket for sulfotyrosine and makes extended backbone interactions with CIF2. Quantitative biochemical comparisons reveal that GSO1/SGN3-CIF2 represents one of the strongest receptor-ligand pairs known in plants. Multiple missense mutations are required to block CIF2 binding in vitro and GSO1/SGN3 function in vivo. Using structure-guided sequence analysis we uncover previously uncharacterized CIF peptides conserved among higher plants. Quantitative binding assays with known and novel CIFs suggest that the homologous LRR-RKs GSO1/SGN3 and GSO2 have evolved unique peptide binding properties to control different developmental processes. A quantitative biochemical interaction screen, a CIF peptide antagonist and genetic analyses together implicate SERK proteins as essential coreceptor kinases required for GSO1/SGN3 and GSO2 receptor activation. Our work provides a mechanistic framework for the recognition of sequence-divergent peptide hormones in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cinética , Ligantes , Peptídeos/química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética
4.
New Phytol ; 225(2): 637-652, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423587

RESUMO

Inorganic polyphosphates (polyPs) and inositol pyrophosphates (PP-InsPs) form important stores of inorganic phosphate and can act as energy metabolites and signaling molecules. Here we review our current understanding of polyP and inositol phosphate (InsP) metabolism and physiology in plants. We outline methods for polyP and InsP detection, discuss the known plant enzymes involved in their synthesis and breakdown, and summarize the potential physiological and signaling functions for these enigmatic molecules in plants.


Assuntos
Fosfatos de Inositol/metabolismo , Plantas/metabolismo , Regulação Alostérica , Fosfatos de Inositol/química , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Transdução de Sinais , Simbiose
5.
Plant J ; 102(3): 507-516, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31816134

RESUMO

Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Polyphosphates represent important stores of phosphate and energy, and are abundant in many pro- and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP-binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabidopsis cells by heterologous expression of Escherichia coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme leads to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1-expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron-dense structures in transmission electron microscopy sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono- and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalcisomes in the green alga Chlamydomonas reinhardtii.


Assuntos
Polifosfatos/metabolismo , Chlamydomonas/metabolismo , Metabolismo Energético/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
6.
Elife ; 82019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31436531

RESUMO

Many eukaryotic proteins regulating phosphate (Pi) homeostasis contain SPX domains that are receptors for inositol pyrophosphates (PP-InsP), suggesting that PP-InsPs may regulate Pi homeostasis. Here we report that deletion of two diphosphoinositol pentakisphosphate kinases VIH1/2 impairs plant growth and leads to constitutive Pi starvation responses. Deletion of phosphate starvation response transcription factors partially rescues vih1 vih2 mutant phenotypes, placing diphosphoinositol pentakisphosphate kinases in plant Pi signal transduction cascades. VIH1/2 are bifunctional enzymes able to generate and break-down PP-InsPs. Mutations in the kinase active site lead to increased Pi levels and constitutive Pi starvation responses. ATP levels change significantly in different Pi growth conditions. ATP-Mg2+ concentrations shift the relative kinase and phosphatase activities of diphosphoinositol pentakisphosphate kinases in vitro. Pi inhibits the phosphatase activity of the enzyme. Thus, VIH1 and VIH2 relay changes in cellular ATP and Pi concentrations to changes in PP-InsP levels, allowing plants to maintain sufficient Pi levels.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Difosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Trifosfato de Adenosina/metabolismo , Deleção de Genes , Homeostase , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
7.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133615

RESUMO

Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Here, we report that bacterial, archaeal, and eukaryotic conserved histidine α-helical (CHAD) domains are specific polyP-binding modules. Crystal structures reveal that CHAD domains are formed by two four-helix bundles, giving rise to a central pore surrounded by conserved basic surface patches. Different CHAD domains bind polyPs with dissociation constants ranging from the nano- to mid-micromolar range, but not nucleic acids. A CHAD-polyP complex structure reveals the phosphate polymer binding across the central pore and along the two basic patches. Mutational analysis of CHAD-polyP interface residues validates the complex structure. The presence of a CHAD domain in the polyPase ygiF enhances its enzymatic activity. The only known CHAD protein from the plant Ricinus communis localizes to the nucleus/nucleolus when expressed in Arabidopsis and tobacco, suggesting that plants may harbor polyPs in these compartments. We propose that CHAD domains may be used to engineer the properties of polyP-metabolizing enzymes and to specifically localize polyP stores in eukaryotic cells and tissues.


Assuntos
Células Eucarióticas , Modelos Moleculares , Polifosfatos/química , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Linhagem Celular , Histidina , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice
8.
Nat Plants ; 5(2): 184-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737513

RESUMO

Eukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes. We could rationalize these puzzling findings by characterizing a uORF in the AtTTM3 locus encoding CELL DIVISION CYCLE PROTEIN 26 (CDC26), an orthologue of the cell cycle regulator. We demonstrate that AtCDC26 is part of the plant anaphase promoting complex/cyclosome (APC/C), regulates accumulation of APC/C target proteins and controls cell division, growth and embryo development. AtCDC26 and AtTTM3 are translated from a single transcript conserved across the plant lineage. While there is no apparent biochemical connection between the two gene products, AtTTM3 coordinates AtCDC26 translation by recruiting the transcript into polysomes. Our work highlights that uORFs may encode functional proteins in plant genomes.


Assuntos
Hidrolases Anidrido Ácido/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regiões 5' não Traduzidas , Hidrolases Anidrido Ácido/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fases de Leitura Aberta , Plantas Geneticamente Modificadas , Polirribossomos/genética , Polirribossomos/metabolismo
9.
Commun Biol ; 2: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775457

RESUMO

Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.


Assuntos
Proteínas de Ligação a DNA/genética , Embriófitas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Embriófitas/classificação , Embriófitas/metabolismo , Dosagem de Genes , Duplicação Gênica , Ontologia Genética , Deriva Genética , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
10.
EMBO Rep ; 19(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177554

RESUMO

MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repressive effect that is common to all macroH2A proteins. In the absence of DNA damage, the macroH2A linker is also sufficient for rescuing heterochromatin architecture in cells deficient for macroH2A.


Assuntos
Cromatina/genética , Epigênese Genética/genética , Histonas/química , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Cromatina/química , Cristalografia por Raios X , Dano ao DNA/genética , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
11.
EMBO Rep ; 18(8): 1367-1381, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28607033

RESUMO

Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root-active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co-receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3-mediated CLE45 signaling. Moreover, protophloem-specific CRN expression complements resistance of the crn mutant to root-active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Membrana/metabolismo , Floema/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Peptídeos/genética , Peptídeos/metabolismo , Floema/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais
12.
Science ; 352(6288): 986-90, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27080106

RESUMO

Phosphorus is a macronutrient taken up by cells as inorganic phosphate (P(i)). How cells sense cellular P(i) levels is poorly characterized. Here, we report that SPX domains--which are found in eukaryotic phosphate transporters, signaling proteins, and inorganic polyphosphate polymerases--provide a basic binding surface for inositol polyphosphate signaling molecules (InsPs), the concentrations of which change in response to P(i) availability. Substitutions of critical binding surface residues impair InsP binding in vitro, inorganic polyphosphate synthesis in yeast, and P(i) transport in Arabidopsis In plants, InsPs trigger the association of SPX proteins with transcription factors to regulate P(i) starvation responses. We propose that InsPs communicate cytosolic P(i) levels to SPX domains and enable them to interact with a multitude of proteins to regulate P(i) uptake, transport, and storage in fungi, plants, and animals.


Assuntos
Homeostase , Inositol/metabolismo , Proteínas de Transporte de Fosfato/química , Fósforo/metabolismo , Polifosfatos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Citosol/metabolismo , Humanos , Proteínas de Transporte de Fosfato/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
13.
J Biol Chem ; 290(38): 23348-60, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26221030

RESUMO

Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Pirofosfatase Inorgânica/química , Metaloproteínas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Pirofosfatase Inorgânica/genética , Metaloproteínas/genética , Homologia Estrutural de Proteína
14.
Structure ; 20(2): 292-302, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325778

RESUMO

Plants and bacteria assimilate sulfur into cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase complex (CSC), which consists of serine-acetyl-transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL) enzymes. The activity of OAS-TL is reduced by formation of the CSC. Although this reduction is an inherent part of the self-regulation cycle of cysteine biosynthesis, there has until now been no explanation as to how OAS-TL loses activity in plants. Complexation of SAT and OAS-TL involves binding of the C-terminal tail of SAT in one of the active sites of the homodimeric OAS-TL. We here explore the flexibility of the unoccupied active site in Arabidopsis thaliana cytosolic and mitochondrial OAS-TLs. Our results reveal two gates in the OAS-TL active site that define its accessibility. The observed dynamics of the gates show allosteric closure of the unoccupied active site of OAS-TL in the CSC, which can hinder substrate binding, abolishing its turnover to cysteine.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína Sintase/química , Cisteína/biossíntese , Mitocôndrias/enzimologia , Regulação Alostérica , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína , Serina O-Acetiltransferase/química
15.
Proc Natl Acad Sci U S A ; 107(40): 17427-32, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20858733

RESUMO

Invertases are highly regulated enzymes with essential functions in carbohydrate partitioning, sugar signaling, and plant development. Here we present the 2.6 Å crystal structure of Arabidopsis cell-wall invertase 1 (INV1) in complex with a protein inhibitor (CIF, or cell-wall inhibitor of ß-fructosidase) from tobacco. The structure identifies a small amino acid motif in CIF that directly targets the invertase active site. The activity of INV1 and its interaction with CIF are strictly pH-dependent with a maximum at about pH 4.5. At this pH, isothermal titration calorimetry reveals that CIF tightly binds its target with nanomolar affinity. CIF competes with sucrose (Suc) for the same binding site, suggesting that both the extracellular Suc concentration and the pH changes regulate association of the complex. A conserved glutamate residue in the complex interface was previously identified as an important quantitative trait locus affecting fruit quality, which implicates the invertase-inhibitor complex as a main regulator of carbon partitioning in plants. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. However, CIF and PMEI use distinct surface areas to selectively inhibit very different enzymatic scaffolds.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Parede Celular/enzimologia , Concentração de Íons de Hidrogênio , Conformação Proteica , beta-Frutofuranosidase/antagonistas & inibidores , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Nicotiana , beta-Frutofuranosidase/genética
16.
Nat Struct Mol Biol ; 16(9): 923-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19680243

RESUMO

Poly-ADP-ribosylation is a post-translational modification catalyzed by PARP enzymes with roles in transcription and chromatin biology. Here we show that distinct macrodomains, including those of histone macroH2A1.1, are recruited to sites of PARP1 activation induced by laser-generated DNA damage. Chemical PARP1 inhibitors, PARP1 knockdown and mutation of ADP-ribose-binding residues in macroH2A1.1 abrogate macrodomain recruitment. Notably, histone macroH2A1.1 senses PARP1 activation, transiently compacts chromatin, reduces the recruitment of DNA damage factor Ku70-Ku80 and alters gamma-H2AX patterns, whereas the splice variant macroH2A1.2, which is deficient in poly-ADP-ribose binding, does not mediate chromatin rearrangements upon PARP1 activation. The structure of the macroH2A1.1 macrodomain in complex with ADP-ribose establishes a poly-ADP-ribose cap-binding function and reveals conformational changes in the macrodomain upon ligand binding. We thus identify macrodomains as modules that directly sense PARP activation in vivo and establish macroH2A histones as dynamic regulators of chromatin plasticity.


Assuntos
Cromatina , Histonas/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Motivos de Aminoácidos , Dano ao DNA , Ativação Enzimática , Células HeLa , Histonas/química , Humanos , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA
17.
Science ; 324(5926): 513-6, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19390046

RESUMO

Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.


Assuntos
Proteínas de Membrana/química , Fosfotransferases/química , Polifosfatos/química , Proteínas de Saccharomyces cerevisiae/química , Transporte Biológico , Catálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfotransferases/metabolismo , Polifosfatos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Plant J ; 54(6): 1063-75, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346196

RESUMO

In plants, the first committed enzyme for glutathione biosynthesis, gamma-glutamylcysteine ligase (GCL), is under multiple controls. The recent elucidation of GCL structure from Brassica juncea (BjGCL) has revealed the presence of two intramolecular disulfide bridges (CC1, CC2), which both strongly impact on GCL activity in vitro. Here we demonstrate that cysteines of CC1 are confined to plant species from the Rosids clade, and are absent in other plant families. Conversely, cysteines of CC2 involved in the monomer-dimer transition in BjGCL are not only conserved in the plant kingdom, but are also conserved in the evolutionarily related alpha- (and some gamma-) proteobacterial GCLs. Focusing on the role of CC2 for GCL redox regulation, we have extended our analysis to all available plant (31; including moss and algal) and related proteobacterial GCL (46) protein sequences. Amino acids contributing to the homodimer interface in BjGCL are highly conserved among plant GCLs, but are not conserved in related proteobacterial GCLs. To probe the significance of this distinction, recombinant GCLs from Nicotiana tabacum (NtGCL), Agrobacterium tumefaciens (AtuGCL, alpha-proteobacteria) and Xanthomonas campestris (XcaGCL, gamma-proteobacteria) were analyzed for their redox response. As expected, NtGCL forms a homodimer under oxidizing conditions, and is activated more than threefold. Conversely, proteobacterial GCLs remain monomeric under oxidizing and reducing conditions, and their activities are not inhibited by DTT, despite the presence of CC2. We conclude that although plant GCLs are evolutionarily related to proteobacterial GCLs, redox regulation of their GCLs via CC2-dependent dimerization has been acquired later in evolution, possibly as a consequence of compartmentation in the redox-modulated plastid environment.


Assuntos
Glutamato-Cisteína Ligase/metabolismo , Nicotiana/enzimologia , Multimerização Proteica , Agrobacterium tumefaciens/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , DNA de Plantas/genética , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Proteínas de Plantas/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Xanthomonas campestris/enzimologia
19.
Nat Struct Mol Biol ; 14(7): 620-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589525

RESUMO

The U2AF-homology motif (UHM) mediates protein-protein interactions between factors involved in constitutive RNA splicing. Here we report that the splicing factor SPF45 regulates alternative splicing of the apoptosis regulatory gene FAS (also called CD95). The SPF45 UHM is necessary for this activity and binds UHM-ligand motifs (ULMs) present in the 3' splice site-recognizing factors U2AF65, SF1 and SF3b155. We describe a 2.1-A crystal structure of SPF45-UHM in complex with a ULM peptide from SF3b155. Features distinct from those of previously described UHM-ULM structures allowed the design of mutations in the SPF45 UHM that selectively impair binding to individual ULMs. Splicing assays using the ULM-selective SPF45 variants demonstrate that individual UHM-ULM interactions are required for FAS splicing regulation by SPF45 in vivo. Our data suggest that networks of UHM-ULM interactions are involved in regulating alternative splicing.


Assuntos
Processamento Alternativo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Receptor fas/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Éxons , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Peptídeos/química , Fosfoproteínas/química , Conformação Proteica , Mapeamento de Interação de Proteínas , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteínas/química , Fator de Processamento U2AF
20.
J Biol Chem ; 281(37): 27557-65, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16766527

RESUMO

Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-A resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.


Assuntos
Brassica/enzimologia , Glutamato-Cisteína Ligase/química , Oxirredução , Arabidopsis/enzimologia , Arabidopsis/genética , Cristalografia por Raios X , Cisteína/química , Dissulfetos/química , Modelos Químicos , Modelos Moleculares , Mutação , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA