Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(6): 867-876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974359

RESUMO

The market demand for essential oil containing citral is increasing. Our research group identified a rare chemotype of Camphora officinarum whose leaves are high in citral content by examining over 1000 wild trees across the entire native distribution area of C. officinarum in China. Because C. officinarum is suitable for large-scale cultivation, it is therefore seen as a promising source of natural citral. However, the molecular mechanism of citral biosynthesis in C. officinarum is poorly understood. In this study, transcriptomic analyses of C. officinarum with different citral contents revealed a strong positive correlation between the expression of a putative geraniol synthase gene (CoGES) and citral content. The CoGES cDNA was cloned, and the CoGES protein shared high similarity with other monoterpene synthases. Enzymatic assays of CoGES with geranyl diphosphate (GPP) as substrate yielded geraniol as the single product, which is the precursor of citral. Further transient expression of CoGES in Nicotiana benthamiana resulted in a higher relative content of geranial and the appearance of a new substance, neral. These findings indicate that CoGES is a geraniol synthase-encoding gene, and the encoded protein can catalyze the transformation of GPP into geraniol, which is further converted into geranial and neral through an unknown mechanism in vivo. These findings expand our understanding of citral biosynthesis in Lauraceae plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01463-4.

2.
Front Genet ; 11: 598714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281883

RESUMO

The roots, bark, and leaves of Cinnamomum camphora are rich in essential oils, which mainly comprised monoterpenes and sesquiterpenes. Although the essential oils obtained from C. camphora have been widely used in pharmaceutical, medicinal, perfume, and food industries, the molecular mechanisms underlying terpenoid biosynthesis are poorly understood. To address this lack of knowledge, we performed transcriptome analysis to investigate the key regulatory genes involved in terpenoid biosynthesis in C. camphora. High-oil-yield trees of linalool type and low-oil-yield trees were used to assemble a de novo transcriptome of C. camphora. A total of 121,285 unigenes were assembled, and the total length, average length, N50, and GC content of unigenes were 87,869,987, 724, 1,063, and 41.1%, respectively. Comparison of the transcriptome profiles of linalool-type C. camphora with trees of low oil yield resulted in a total of 3,689 differentially expressed unigenes, among them 31 candidate genes had annotations associated with metabolism of terpenoids and polyketides, including four in the monoterpenoid biosynthesis pathway and three in the terpenoid backbone biosynthesis pathway. Collectively, this genome-wide transcriptome provides a valuable tool for future identification of genes related to essential oil biosynthesis. Additionally, the identification of a cohort of genes in the biosynthetic pathways of terpenoids provides a theoretical basis for metabolic engineering of essential oils in C. camphora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA