Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 36(4): 1724-1735, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174550

RESUMO

Our current research aims to evaluate the efficiency of a flavor enhancer, maltol (produced by heating ginseng) against cisplatin-evoked cardiotoxicity by establishing cisplatin-induced heart injury in vivo and H9C2 rat cardiomyocyte model. The cisplatin-treated mice at 3 mg/kg for four times on the 7th, 9th, 11th and 13th day, and in them appeared a serious cardiac damage accompanied with the increase in indicators of heart damage. Multiple exposure of 3 mg/kg for four times of cisplatin increased cardiac cells apoptosis with increased expression of Bax and cleaved-caspase 3, and decreased expression of Bcl-2. Interestingly, supplement of maltol at doses of 50 and 100 mg/kg for 15 days significantly suppressed the cardiac disturbance. In cultured H9C2 cells, maltol enhanced PI3K/Akt expression level during cisplatin treatment, and reduced cisplatin-induced apoptosis. Notably, inhibition of PI3K/Akt by LY294002 and HY-10249A lessened the efficacy of maltol. In mice, maltol apparently induced PI3K/Akt in heart tissues and protected against cisplatin-induced cardiotoxicity. In conclusion, maltol exerted the protective effects against cisplatin-induced cardiotoxicity, at least partially by inhibiting the activation of PI3K/Akt signaling pathways in cardiomyocytes, to ease oxidative stress, and alleviate reactive oxygen species-mediated apoptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cisplatino/efeitos adversos , Camundongos , Miócitos Cardíacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pironas , Ratos , Roedores/metabolismo , Transdução de Sinais
2.
Phytomedicine ; 82: 153446, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387967

RESUMO

BACKGROUND: Cisplatin is one of the most common chemotherapeutic drugs. Cisplatin-induced toxicity gives rise to gastrointestinal cell damage, subsequent diarrhea and vomiting, leading to the discontinuation of its clinical application in long-term cancer chemotherapy. Panax quinquefolium L., also known as American ginseng, has many pharmacological activities such as improving immunity, anti-tumor, anti-radiation and blood sugar lowering. PURPOSE: Previously, our laboratory reported that American ginseng berry extract could alleviate chemotherapeutic agents-induced renal damage caused by cisplatin. Hence, this study further explored the protective effect of P. quinquefolium saponins (PQS) on cisplatin-induced intestinal injury in mice and the possible molecular mechanisms. METHODS: Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze intestinal injury based on various molecular mechanisms. RESULTS: We demonstrated the destruction of the intestinal barrier caused by cisplatin exposure by detecting the activity of diamine oxidase (DAO) and the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin. Meanwhile, cisplatin exposure changed SOD and MDA levels in the small intestine, causing oxidative damage to the intestinal mucosa. The inflammation associated-intestinal damage was further explored by the measurement of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and analysis of nuclear factor-kappa B (NF-κB) inflammatory pathway protein expression. Moreover, apoptotic cells labeled with TUNEL staining-positive cells and activated caspase family proteins suggest that cisplatin induces intestinal apoptosis. Interestingly, PQS pretreatment significantly reversed these situations. CONCLUSION: These evidences clearly suggest that PQS can alleviate cisplatin-induced intestinal damage by inhibiting oxidative stress, reducing the occurrence of inflammation and apoptosis, and improving intestinal barrier function.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Intestinos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Animais , Antineoplásicos/farmacologia , Masculino , Camundongos
3.
Phytother Res ; 35(1): 311-323, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32767418

RESUMO

Heat stress (HS) reaction is a stress response caused by adverse conditions. Currently, the incidence of reproductive malignancies particularly in males has been constantly increasing. This work investigated the effects of saponins derived from the stems and leaves of Panax ginseng (GSLS) on testicular injury induced by scrotal hyperthermia in mice. GSLS (150, 300 mg/kg) were administered intragastrically to mice for 14 days, then exposed to a single scrotal heat treatment at 43°C for 18 min on seventh day. HS induced a significant loss of multinucleate giant cells, desquamation of germ cells in destructive seminiferous tubules. Moreover, HS reduced the serum testosterone, testicular tissue superoxide dismutase activity and glutathione (GSH) content, while significantly enhanced the production of malondialdehyde (p < .05). GSLS exhibited the protective potential against HS-induced injury not only by modulating Bcl-2 family and caspase protease family, but also by suppressing the protein levels of heme oxygenase-1 (HO-1), heat shock protein 70 (HSP70), hypoxia inducible factor-1α (HIF-1α) and activation of Mitogen-activated protein kinase (MAPK) signaling pathways (p < .05). In conclusion, we clearly demonstrated that GSLS exhibited a significant protective effect against HS-induced testicular dysfunction, mainly the inhibition of oxidative stress associated apoptosis partly via regulation of the MAPK signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Saponinas/farmacologia , Espermatogênese/efeitos dos fármacos , Animais , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Temperatura Alta/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Malondialdeído/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Superóxido Dismutase/metabolismo , Testículo/efeitos dos fármacos , Testosterona/sangue
4.
J Ethnopharmacol ; 267: 113500, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091499

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a major complication of diabetes. The kidney disease develops in nearly 20%-40% of type 2 diabetes (T2D) patients. Ginseng is the root of Panax ginseng C. A. Meyer and has been used in prevention and treatment of diseases for more than 2000 years as a traditional oriental medicine. The 20(R)-ginsenoside Rg3, an active saponin isolated from ginseng, can prevent and treat many diseases. The object of this research was to explore the alleviative effects of 20(R)-Rg3 on DN in mice. MATERIALS AND METHODS: The T2D animal model was induced by continuous access to a high fat diet (HFD) combined with a single injection of 100 mg/kg streptozotocin (STZ) in C57BL/6 mice. The mice were treated by oral gavage of the 20(R)-Rg3 (10, 20 mg/kg) for 8 weeks. Functional and histopathological analyses of the kidneys were then performed. Protein expression levels of MAPKs and NF-κB signal pathways in the kidney were evaluated by western blotting. The expressions of HO-1 and NF-κB in the kidney were measured by fluorescent labeling staining. Other assessments including fasting blood glucose (FBG) levels, blood lipids, oxidative indicators, and inflammatory factors were all performed. RESULTS: Abnormally elevated FBG levels were observed in HFD/STZ mice, contributing significantly to the occurrence of DN. Simultaneously, HFD/STZ mice showed the rise of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the decrease in high density lipoprotein cholesterol (HDL-C). DN was evidenced by the overproduction of malondialdehyde (MDA), decreased levels of superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, high levels of serum blood urea nitrogen (BUN) and creatinine (Cr). Simultaneously, the results of the immunofluorescence assay showed an increased expression level in NF-κB p65 while a decrease in antioxidant enzyme HO-1 was observed. Herein, 20(R)-Rg3 treatment for 8 weeks not only attenuated FBG levels and advanced glycation end products (AGEs) levels but also improved insulin (INS) level, blood lipids, oxidative stress, and renal function by regulating MAPKs and NF-κB signal pathways in DN mice. CONCLUSION: Taken together, the findings from the present study explicitly confirmed that 20(R)-Rg3 exerted ameliorative effects on DN mice via improving anti-oxidative activity and reducing renal inflammation.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Ginsenosídeos/farmacologia , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Heme Oxigenase-1/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Estreptozocina , Fator de Transcrição RelA/metabolismo
5.
Am J Chin Med ; 48(5): 1141-1157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668974

RESUMO

Oxidative stress is considered as a major factor in aging and exacerbates aging process through a variety of molecular mechanisms. D-galactose, a normal reducing sugar with high dose can cause the accumulation of reactive oxygen species (ROS) or stimulate free radical production indirectly by the formation of advanced glycation end products in tissues, finally resulting in oxidative stress. 20(R)-ginsenoside Rg3 (20(R)-Rg3), a major and representative component isolated from red ginseng (Panax ginseng C.A Meyer), has been shown to observably have an anti-oxidative effect. We thereby investigated the beneficial effects of 20(R)-Rg3 on D-galactose-induced oxidative stress injury and its underlying mechanisms. Our results showed that continuous injection of D-galactose with 800[Formula: see text]mg/kg/day for 8 weeks increased the levels of alanine aminotransferase (ALT) and blood urea nitrogen (BUN). However, such increases were attenuated by the treatment of 20(R)-Rg3 for 4 weeks. Meanwhile, 20(R)-Rg3 markedly inhibited D-galactose-caused oxidative stress in liver and kidney. The anti-oxidants, including catalase (CAT) and superoxide dismutase (SOD), were elevated in the mice from 20(R)-Rg3-treated group compared with that from D-galactose group. In contrast, a significant decrease in levels of cytochrome P450 E1 (CYP2E1) and the lipid peroxidation product malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were observed in the 20(R)-Rg3-treated group. These effects were associated with a significant increase of AGEs. More importantly, 20(R)-Rg3 effectively attenuated D-galactose induced apoptosis in liver and kidney via restoring the upstream PI3K/AKT signaling pathway. Taken together, our study suggests that 20(R)-Rg3 may be a novel and promising anti-oxidative therapeutic agent to prevent aging-related injuries in liver and kidney.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Galactose/efeitos adversos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Fitoterapia , Animais , Antioxidantes , Modelos Animais de Doenças , Ginsenosídeos/isolamento & purificação , Produtos Finais de Glicação Avançada/metabolismo , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Cell Prolif ; 52(4): e12627, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31094028

RESUMO

OBJECTIVES: Based on previous reports that ginsenosides have been shown to exert better preventive effects on cisplatin-induced kidney injury, the present work aims to evaluate the protective effects of ginsenoside Rb3 (G-Rb3) on cisplatin-induced renal damage and underlying mechanisms in vivo and in vitro. MATERIALS AND METHODS: The protective effect of G-Rb3 on cisplatin-induced acute renal failure in ICR mouse model and HEK293 cell model was investigated, and the underlying possible mechanisms were also explored. For animal experiment, renal function, kidney histology, inflammation, oxidative stress, relative protein molecules involved in apoptosis and autophagy signalling pathways were assessed. In addition, rapamycin (a specific inhibitor of mTOR), compound C (a specific inhibitor of AMPK) and acetylcysteine (NAC, a specific ROS scavenger) were employed to testify the effects of AMPK/mTOR signal pathway on the protective effects of G-Rb3 in HEK293 cells. RESULTS: Pre-treatment with G-Rb3 at doses of 10 and 20 mg/kg for ten days significantly reversed the increases in serum creatinine (CRE), blood urea nitrogen (BUN) and malondialdehyde (MDA), and decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Histopathological examination further revealed that G-Rb3 inhibited cisplatin-induced nephrotoxicity. G-Rb3 diminished cisplatin-induced increase in protein expression levels of p62, Atg3, Atg5 and Atg7, and decrease in protein expression level of p-mTOR and the ratio of LC3-I/LC3-II, indicating that G-Rb3 suppressed cisplatin-induced activation of autophagy. Inhibition of autophagy induced inactivation of apoptosis, which suggested that autophagy played an adverse effect on cisplatin-evoked renal damage. Further, we found that G-Rb3 might potentially modulate the expressions of AMPK-related signal pathways. CONCLUSIONS: These findings clearly suggested that G-Rb3-mediated alleviation of cisplatin-induced nephrotoxicity was in part due to regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cisplatino/farmacologia , Ginsenosídeos/farmacologia , Substâncias Protetoras/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
7.
J Agric Food Chem ; 67(20): 5754-5763, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31045365

RESUMO

Recently, although ginseng ( Panax ginseng C. A. Meyer) and its main component saponins (ginsenosides) have been reported to exert protective effects on cisplatin (CDDP)-induced acute kidney injury (AKI), the beneficial activities of non-saponin on CDDP-induced AKI is little known. This research was designed to explore the protective effect and underlying mechanism of arginyl-fructosyl-glucose (AFG), a major and representative non-saponin component generated during the process of red ginseng, on CDDP-caused AKI. AFG at doses of 40 and 80 mg/kg remarkably reversed CDDP-induced renal dysfunction, accompanied by the decreased levels of serum creatinine and blood urea nitrogen. Interestingly, all of oxidative stress indices were ameliorated after pretreatment with AFG continuously for 10 days. Importantly, AFG relieved CDDP-induced inflammation and apoptosis in part by mitigating the cascade initiation steps of nuclear factor κB signals and regulating the participation of the phosphatidylinositol 3-kinase/protein kinase B signal pathway. In conclusion, these results clearly provide strong rationale for the development of AFG to prevent CDDP-induced AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Arginina/análogos & derivados , Cisplatino/efeitos adversos , Medicamentos de Ervas Chinesas/administração & dosagem , Glucose/administração & dosagem , Glicina/análogos & derivados , NF-kappa B/metabolismo , Panax/química , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Arginina/administração & dosagem , Arginina/química , Creatinina/metabolismo , Medicamentos de Ervas Chinesas/química , Glucose/química , Glicina/administração & dosagem , Glicina/química , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Reação de Maillard , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/genética , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos
8.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871042

RESUMO

The anthracycline antibiotic doxorubicin is commonly used antineoplastic drug in breast cancer treatment. Like most chemotherapy, doxorubicin does not selectively target tumorigenic cells with high proliferation rate and often causes serve side effects. In the present study, we demonstrated the cellular senescence and senescence associated secretory phenotype (SASP) of both breast tumor cell MDA-MB-231 and normal epithelial cell MCF-10A induced by clinical dose of doxorubicin (100 nM). Senescence was confirmed by flattened morphology, increased level of beta galactose, accumulating contents of lysosome and mitochondrial, and elevated expression of p16 and p21 proteins. Similarly, SASP was identified by highly secreted proteins IL-6, IL-8, GRO, GM-CSF, MCP-1, and MMP1 by antibody array assay. Reciprocal experiments, determined by cell proliferation and apoptosis assays and cell migration and cell invasion, indicated that SASP of MDA-MB-231 cell induces growth arrest of MCF-10A, whereas SASP of MCF-10A significantly stimulates the proliferation of MDA-MB-231. Interestingly, SASP from both cells powerfully promotes the cell migration and cell invasion of MDA-MB-231 cells. Treatment with the natural product ginsenoside Rh2 does not prevent cellular senescence or exert senolytic. However, SASP from senescent cells treated with Rh2 greatly attenuated the above-mentioned bystander effect. Altogether, Rh2 is a potential candidate to ameliorate this unwanted chemotherapy-induced senescence bystander effect.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Efeito Espectador/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Células Epiteliais/efeitos dos fármacos , Ginsenosídeos/farmacologia , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Invasividade Neoplásica/patologia
9.
J Agric Food Chem ; 67(5): 1392-1401, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644744

RESUMO

Our previous study has confirmed that maltol can attenuate alcohol-induced acute hepatic damage and prevent oxidative stress in mice. Therefore, maltol might have the capacity to improve thioacetamide (TAA)-induced liver fibrosis. The purpose of this work was to explore the antifibrotic efficacy and underlying mechanisms of maltol for TAA-treated mice. Progressive liver fibrosis was established with a dose-escalating protocol in which the mice received TAA intraperitoneal three times a week for a total duration of 9 weeks. The injection doses of TAA were 50 mg/kg for the first week, 100 mg/kg for the second and third weeks, and 150 mg/kg for the rest of the injections. Maltol with doses of 50 and 100 mg/kg was given by gavage after 4 weeks of intraperitoneal injection of TAA, respectively, once daily for 5 weeks. Results indicated that TAA intraperitoneal injection significantly increased serum activities of alanine aminotransferase (ALT) (52.93 ± 13.21 U/L vs 10.22 ± 3.36 U/L) and aspartate aminotransferase (AST) (67.58 ± 25.84 U/L vs 39.34 ± 3.89 U/L); these elevations were significantly diminished by pretreatment with maltol. Additionally, maltol ameliorated TAA-induced oxidative stress with attenuation in MDA ( p < 0.05 or p < 0.01) content; evident elevation in the GSH levels, GSH/GSSG ratio ( p < 0.05 or p < 0.01), and superoxide dismutase (SOD) ( p < 0.01); and restored liver histology accompanied by a decrease of α-smooth muscle actin (α-SMA) expression. Furthermore, maltol significantly suppressed the transforming growth factor-ß1 (TGF-ß1) expression and the PI3K/Akt pathway. This study suggested that maltol alleviated experimental liver fibrosis by suppressing the activation of HSCs and inducing apoptosis of activated HSCs through TGF-ß1-mediated PI3K/Akt signaling pathway. These findings further clearly suggested that maltol is a potent therapeutic candidate for the alleviation of liver fibrosis.


Assuntos
Cirrose Hepática/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pironas/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tioacetamida/efeitos adversos , Fator de Crescimento Transformador beta1/genética
10.
Biomed Pharmacother ; 109: 2309-2317, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551489

RESUMO

Cisplatin, as an effective chemotherapeutic agent, is widely used to treat verious types of cancers. Nephrotoxicity induced by cisplatin seriously limits its clinical application. Icariin, a major and remarkable flavonoid isolated from Epimedium koreanum, has been reported to exert anti-oxidative stress and anti-inflammation actions. The purpose of this study is to explore the protective effect and possible mechanism of icariin on cisplatin-induced nephrotoxicity on HEK-293 cells. In this study, icariin pretreatment for 24 h significantly ameliorated cisplatin-induced oxidative stress by reducing levels of malondialdehyde (MDA) and reactive oxygen species (ROS), while increasing level of glutathione (GSH) in HEK-293 cells. Furthermore, icariin pretreatment reduced NF-κB phosphorylation and nuclear translocation in HEK-293 cells followed by decreased secretion of IL-1ß, TNF-α, and iNOS, suggesting a suppression of inflammatory response. Moreover, icariin pretreatment significantly reduced cellular apoptosis via reduced levels of Bax, cleaved caspase-3/9, and increased anti-apoptotic protein Bcl-2 in the cells. Importantly, LY294002, a specific PI3K inhibitor, abrogated the anti-apoptosis effect of icariin, implicating the involvement of PI3K/Akt pathway. In summary, icariin prevents cisplatin-induced HEK-293 cell injury by inhibiting oxidative stress, inflammatory response, and cellular apoptosis partly via regulating NF-κB and PI3K/Akt signaling pathways. Icariin may serve as a potential therapeutic target against cisplatin-induced nephrotoxicity.


Assuntos
Cisplatino/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Epimedium , Células HEK293 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores
11.
Sci Rep ; 8(1): 15922, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374107

RESUMO

Cisplatin, a potent anticancer drug, is usually causing nephrotoxicity; limiting its therapeutic application and efficiency. Maltol may be used to prevent such toxic effect. The aim of this study was to investigate the underlying protective mechanisms of maltol on nephrotoxicity by cisplatin using a cisplatin-treated mouse model and a cellular toxicity model of HEK293 cells. The blood urea nitrogen (BUN), creatinine (CRE) and neutrophil gelatinase-associated lipocalin (NGAL) levels in mice were increased by cisplatin but decreased to normal ranges by maltol pretreatment (50 and 100 mg/kg) for ten days. Besides, maltol pretreatment decreased oxidative stress, lipid peroxidation and apoptosis in cisplatin-treated mice. The inhibitory action of maltol on inflammatory responses was achieved by reducing the expressions in NF-κB, IL-1ß, iNOS, and TNF-α in the mice in vivo. Additionally, maltol restored the reduction of PI3K/Akt and mTOR levels by cisplatin through increasing AMPK expression in cisplatin-treated HEK293 cells. Maltol also suppressed the expression of Bax and caspase 3 by inhibiting the p53 activity in HEK293 cells. Overall, maltol may serve as a valuable potential drug to prevent cisplatin-induced nephrotoxicity, and the underlying molecular mechanisms of maltol action may involve intracellular AMPK/PI3K/Akt and p53 signaling pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cisplatino/farmacologia , Rim/metabolismo , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Molecules ; 23(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142916

RESUMO

The purpose of this research was to evaluate whether maltol could protect from hepatic injury induced by carbon tetrachloride (CCl4) in vivo by inhibition of apoptosis and inflammatory responses. In this work, maltol was administered at a level of 100 mg/kg for 15 days prior to exposure to a single injection of CCl4 (0.25%, i.p.). The results clearly indicated that the intrapulmonary injection of CCl4 resulted in a sharp increase in serum aspartate transaminase (AST) and alanine transaminase (ALT) activities, tumor necrosis factor-α (TNF-α), irreducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB) and interleukin-1ß (IL-1ß) levels. Histopathological examination demonstrated severe hepatocyte necrosis and the destruction of architecture in liver lesions. Immunohistochemical staining and western blot analysis suggested an accumulation of iNOS, NF-κB, IL-1ß and TNF-α expression. Maltol, when administered to mice for 15 days, can significantly improve these deleterious changes. In addition, TUNEL and Hoechst 33258 staining showed that a liver cell nucleus of a model group diffused uniform fluorescence following CCl4 injection. Maltol pretreatment groups did not show significant cell nuclear condensation and fragmentation, indicating that maltol inhibited CCl4-induced cell apoptosis. By evaluating the liver catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) activity, and further using a single agent to evaluate the oxidative stress in CCl4-induced hepatotoxicity by immunofluorescence staining, maltol dramatically attenuated the reduction levels of hepatic CAT, GSH and SOD, and the over-expression levels of CYP2E1 and HO-1. In the mouse model of CCl4-induced liver injury, we have demonstrated that the inflammatory responses were inhibited, the serum levels of ALT and AST were reduced, cell apoptosis was suppressed, and liver injury caused by CCl4 was alleviated by maltol, demonstrating that maltol may be an efficient hepatoprotective agent.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/lesões , Pironas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aromatizantes/uso terapêutico , Glutationa/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
13.
Int Immunopharmacol ; 59: 21-30, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621733

RESUMO

Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetaminofen/toxicidade , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Panax , Transdução de Sinais/efeitos dos fármacos
14.
Phytother Res ; 31(9): 1400-1409, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28731262

RESUMO

Cisplatin is an effective anticancer chemotherapeutic agent, but the use of cisplatin in the clinic is severely limited by side effects. Nephrotoxicity is a major factor that contributes to the side effects of cisplatin chemotherapy. The aim of this research was to survey the nephroprotective effects of anthocyanin from the fruits of Panax ginseng (GFA) in a murine model of cisplatin-induced acute kidney injury. We observed that pretreatment with GFA attenuated cisplatin-induced elevations in blood urea nitrogen and creatinine levels and histopathological injury induced by cisplatin. The formation of kidney malondialdehyde, heme oxygenase-1, cytochrome P450 E1 and 4-hydroxynonenal with a concomitant reduction in reduced glutathione was also inhibited by GFA, while the activities of kidney superoxide dismutase and catalase were all increased. GFA also inhibited the increase in serum tumour necrosis factor-α and interleukin-1ß induced by cisplatin. In addition, the levels of induced nitric oxide synthase and cyclooxygenase-2 were suppressed by GFA. Furthermore, GFA supplementation inhibited the activation of apoptotic pathways by increasing B cell lymphoma 2 and decreasing Bcl2-associated X protein expression. In conclusion, the findings from the present investigation demonstrate that GFA pre-administration can significantly prevent cisplatin-induced nephrotoxicity, which may be related to its antioxidant, anti-apoptotic and antiinflammatory effects. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Antocianinas/farmacologia , Cisplatino/efeitos adversos , Panax/química , Injúria Renal Aguda/induzido quimicamente , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/efeitos adversos , Frutas/química , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos
15.
World J Microbiol Biotechnol ; 29(12): 2429-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23918632

RESUMO

Esteya vermicola, an endoparasitic fungus of Bursaphelenchus xylophilus, the pinewood nematode (PWN), exhibits great potential as a biological control agent against this nematode. E. vermicola produces blastospores in liquid media and aerial conidia on solid media. The agent was mass-produced using two kinds of culture media: S (50 % wheat bran and 50 % pine wood powder), L (0.5 g wheat bran and 0.5 g pinewood powder in 200 ml of potato dextrose broth), and two controls: SC (potato dextrose agar), LC (potato dextrose broth). Yields, multiple stress tolerance, storage life, new generation conidial number, and PWN mortality rates of the spores were measured in each of these four media and compared. The spore yields, new generation conidial number, and nematode mortality rates of blastospores were higher than those of conidia. Nevertheless, the conidia had a higher germination rate than the blastospores during the storage process and multiple stress treatments. Considering the number of spores surviving from the process of the storage and multiple stress treatments per unit of mass media, the blastospores from L survived most. Comprehensive analysis indicates that the L culture medium is the most optimal medium for mass production relatively.


Assuntos
Ascomicetos/fisiologia , Esporos Fúngicos/fisiologia , Tylenchida/microbiologia , Animais , Meios de Cultura , Fermentação , Pinus/parasitologia , Doenças das Plantas/parasitologia , Estresse Fisiológico , Tylenchida/crescimento & desenvolvimento , Madeira/parasitologia
16.
Biochem Biophys Res Commun ; 436(1): 104-9, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23726916

RESUMO

Chemotherapy frequently results in neurocognitive deficits that include impaired learning and memory. Thus, it is important to prevent or ameliorate the persistence of cognitive impairment. Compound K was employed to examine the ameliorating effect on chronic treatment with cyclophosphamide. Eight week-old ICR mice were given 80 mg/kg cyclophosphamide, cyclophosphamide combined with compound K (2.5, 5 and 10 mg/kg) or saline injections once per week for 4 weeks. Passive avoidance test and Y maze were used to evaluate memory and learning ability. Immunohistochemical staining for progenitor cell and immature neurons was used to assess changes in neurogenesis. Compound K (10 mg/kg) is able to ameliorate the decrease of neurogenesis in the hippocampus caused by cyclophosphamide. These results suggest that compound K might be a potential strategy to ameliorate or repair the disrupted hippocampal neurogenesis induced by the side effect of chemotherapy agent.


Assuntos
Antineoplásicos/efeitos adversos , Transtornos Cognitivos/tratamento farmacológico , Ciclofosfamida/efeitos adversos , Ginsenosídeos/farmacologia , Animais , Antineoplásicos/farmacologia , Transtornos Cognitivos/induzido quimicamente , Ciclofosfamida/farmacologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células-Tronco/citologia , Fatores de Tempo
17.
Molecules ; 15(1): 399-406, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20110899

RESUMO

Protopanaxatriol saponins obtained with AB-8 macroporous resin mainly consisted of ginsenosides Rg(1) and Re. A novel mono-ester of ginsenoside-Rh(1) (ginsenoside-ORh(1)) was synthesized through further enzymatic hydrolysis and octanoyl chloride modifications. A 53% yield was obtained by a facile synthetic method. The structures were identified on the basis of 1D-NMR and 2D-NMR, as well as ESI-TOF-MS mass spectroscopic analyses. The isolated and synthetic compounds were applied in an anti-tumor bioassay, in which ginsenoside ORh(1) showed moderate effects on Murine H22 Hepatoma Cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Ginsenosídeos/síntese química , Ginsenosídeos/isolamento & purificação , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Sapogeninas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA