Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133594, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290334

RESUMO

Oil fouling is the crucial issue for the separation of oil-in-water emulsion by membrane technology. The latest research found that the membrane fouling rate was opposite to the widely used theoretical prediction by Derjaguin-Landau-Verwey-Overbeek (DLVO) or extended DLVO (XDLVO) theory. To interpret the contradiction, the molecular dynamics was adopted to explore the molecular behavior of oil and emulsifier (Tween 80) at membrane interface with the assistance of DLVO/XDLVO theory and membrane fouling models. The decreased flux attenuation and fitting of fouling models proved that the existence of Tween 80 effectively alleviated membrane fouling. Conversely, DLVO/XDLVO theory predicted that the membrane fouling should be exacerbated with the increase of Tween 80 concentration in O/W emulsion. This contradiction originated from the different interaction energy between oil/Tween 80 molecules and polyether sulfone (PES) membrane. The favorable free energy of Tween 80 was resulted from the sulfuryl groups in PES and hydrogen bonds (O-H…O) formation further strengthened the interaction. Therefore, Tween 80 could preferentially adsorb on membrane surface and form an isolation layer by demulsification and steric hindrance and resist the aggregation of oil, which effectively alleviated membrane fouling. This study provided a new insight in the interpretation of interaction in O/W emulsion.

2.
Adv Mater ; 34(36): e2202044, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785450

RESUMO

Engineering a proper immune response following biomaterial implantation is essential to bone tissue regeneration. Herein, a biomimetically hierarchical scaffold composed of deferoxamine@poly(ε-caprolactone) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanosheets, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix is fabricated to augment bone repair by facilitating the balance of the immune system and bone metabolism. First, a 3D printed stiff scaffold with a well-organized gradient structure mimics the cortical and cancellous bone tissues; meanwhile, an inside infusion of a soft hydrogel further endows the scaffold with characteristics of the extracellular matrix. A Fenton-like reaction between MnCO and endogenous hydrogen peroxide generated at the implant-tissue site triggers continuous release of carbon monoxide and Mn2+ , thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. Through activating the hypoxia-inducible factor-1α pathway, Mn2+ and DFO@PCL NP further promote angiogenesis. Moreover, DFO inhibits osteoclast differentiation and synergistically collaborates with the osteoinductive activity of HA. Based on amounts of data in vitro and in vivo, strong immunomodulatory, intensive angiogenic, weak osteoclastogenic, and superior osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration, which puts forward a worthy base and positive enlightenment for large-scale bone defect repair.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Regeneração Óssea , Durapatita/química , Gelatina , Hidrogéis/metabolismo , Metacrilatos , Osteogênese , Engenharia Tecidual , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Adv Sci (Weinh) ; 9(5): e2103444, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927373

RESUMO

Cancer immunotherapy has achieved promising clinical progress over the recent years for its potential to treat metastatic tumors and inhibit their recurrences effectively. However, low patient response rates and dose-limiting toxicity remain as major dilemmas for immunotherapy. Stimuli-responsive nanoparticles (srNPs) combined with immunotherapy offer the possibility to amplify anti-tumor immune responses, where the weak acidity, high concentration of glutathione, overexpressions of enzymes, and reactive oxygen species, and external stimuli in tumors act as triggers for controlled drug release. This review highlights the design of srNPs based on tumor microenvironment and/or external stimuli to combine with different anti-tumor drugs, especially the immunoregulatory agents, which eventually realize synergistic immunotherapy of malignant primary or metastatic tumors and acquire a long-term immune memory to prevent tumor recurrence. The authors hope that this review can provide theoretical guidance for the construction and clinical transformation of smart srNPs for controlled drug delivery in synergistic cancer immunotherapy.


Assuntos
Nanopartículas , Recidiva Local de Neoplasia , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Microambiente Tumoral
4.
Talanta ; 217: 121097, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498867

RESUMO

Iron plays an important role in various physiological processes. However, the detailed biological functions of iron have not been sufficiently explored because of a lack of effective methods to monitoring iron, especially the labile ferrous ion (Fe2+). In the current study, a novel turn-on phosphorescent probe for Fe2+ quantification and visualization has been proposed based on the hybrid nanocomposite of manganese dioxide and gemini iridium complex (MnO2-GM-Ir). The surfactant-like GM-Ir with positive charges was beneficial to combine with the negatively charged manganese dioxide (MnO2) nanosheets, and thus endowing the MnO2-GM-Ir nanocomposite excellent dispersion ability in the water as well as efficiently avoiding the interference to the detection caused by the agglomeration of nanocomposite. Phosphorescence of GM-Ir was effectively quenched by MnO2 nanosheets through fluorescence resonance energy transfer (FRET) and the inner filter effect (IFE), while the phosphorescence could be significantly recovered in the presence of Fe2+via a selective Fe2+-mediated reduction of MnO2 nanosheets, indicating a highly-specific selectivity towards Fe2+ with a low detection limit (80 nM). The drug test assay and in vitro imaging studies further proved that the MnO2-GM-Ir nanocomposite could be employed as a promising probe for the quantitative detection of exogenous Fe2+ in drug and in vitro imaging of living cells.


Assuntos
Compostos Ferrosos/análise , Corantes Fluorescentes/química , Imagem Óptica , Animais , Calcitriol/análogos & derivados , Calcitriol/química , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Íons/análise , Irídio/química , Compostos de Manganês/síntese química , Compostos de Manganês/química , Camundongos , Nanocompostos/química , Óxidos/síntese química , Óxidos/química , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
5.
Talanta ; 209: 120516, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892012

RESUMO

Monitoring hypochlorite anion (ClO-) in living cells is particularly meaningful and valuable, because over-exposure of the ClO- may cause a potential health hazard towards animals and humans. Considering the special structure and properties of the gemini surfactant, a novel amphiphilic gemini-iridium complex Ir[(ppy-iso)2(bpy-tma2Br2)] (Ir-iso) with isoniazide as a recognition site for ClO- was designed. The Ir-iso possessed an excellent water-solubility as well as a strong ClO- binding capacity, as revealed from the rapid response of emission signal towards ClO-. It was worth noting that such probe had a highly-specific selectivity with a low detection limit (20.5 nM) and was suitable in physiological environment. The cell viability assay, cell imaging, and co-location studies further proved that the Ir-iso had little cytotoxicity and was specifically localized in the mitochondria of breast cancer cells, being a promising candidate of chemo-sensor to detect the endogenous ClO- in living cells.


Assuntos
Complexos de Coordenação/química , Ácido Hipocloroso/análise , Isoniazida/análogos & derivados , Substâncias Luminescentes/química , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Irídio/química , Isoniazida/síntese química , Isoniazida/toxicidade , Limite de Detecção , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/toxicidade , Medições Luminescentes/métodos , Camundongos , Microscopia Confocal/métodos
6.
Talanta ; 208: 120372, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816688

RESUMO

Inspired by the structure and properties of gemini surfactant, a novel amphiphilic gemini-iridium complex (GIC-Ir) has been developed, which can spontaneously form vesicles by self-assembly and exhibit excellent dispersibility and high emission intensity in water. The emission of GIC-Ir can be rapidly and selectively quenched by picric acid (PA) due to the aromatic groups and two long-chain quaternary ammonium (QA) groups with positive charge, which endow GIC-Ir vesicles outstanding capability to capture negatively charged PA, and greatly promote the interaction between GIC-Ir and PA. Theoretical calculations and spectral studied indicated that the photoinduced electron transfer and resonance energy transfer may be responsible to the emission quenching. Furthermore, the real water samples and in vitro studies further prove that GIC-Ir can be used as a promising chemosensor for the detection of PA both in water and intracellular.


Assuntos
Calcitriol/análogos & derivados , Complexos de Coordenação/química , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/química , Irídio/química , Picratos/análise , Água/química , Calcitriol/química , Células Hep G2 , Humanos , Limite de Detecção , Fatores de Tempo
7.
ACS Appl Mater Interfaces ; 11(39): 36259-36269, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31500411

RESUMO

Well-designed 2D materials with ultrathin structures show great potential for humidity-sensing performance owing to their high surface-volume ratio and a great number of exposed atoms on the surface. However, some sensing elements employed for healthcare applications may be considered as potentially risky, such as inflammation, granuloma formation, and carcinogenesis. Herein, we explored biofriendly humidity-sensing characteristics inspired by the great biocompatibility and conductivity of hyperbranched polyethyleneimine-capped gold nanoparticles and cross-linked with polydopamine from the adhesive proteins in mussels. It was successfully employed into two kinds of wearable devices, sports watches and breathing masks, for real-time recording humidity's fluctuation in expiration and sweat with changes of individual's crying, laughing, nervous, sleeping, training, and cold states. The wearable devices allow us to monitor individual's physical activities and emotional states well, suggesting a promising prospect in safe, reusable, long term, and noncontact human health monitoring applications.


Assuntos
Emoções , Ouro , Nanopartículas Metálicas , Dispositivos de Proteção Respiratória , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica
8.
Talanta ; 202: 303-307, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171186

RESUMO

In this study, we developed a new fluorescent probe (CMM) based on coumarin dye and malononitrile, for highly sensitive and selective detection of hypochlorite ion (ClO-). CMM showed a 45-fold fluorescence enhancement at 459 nm in the presence of ClO- and displayed an excellent selectivity over other competing species. The probe featured a fast response time (<15 s), which could be in favor of the real-time detection towards ClO-. Meanwhile, probe CMM could effectively monitor ClO- in physiological pH condition and the detection limit was estimated to be as low as 5.7 nM. Furthermore, its preeminent recognition properties made the successful application for monitoring ClO- in environmental water samples and labeling ClO- in living biological cells.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Poluição Química da Água/análise , Linhagem Celular Tumoral , Cumarínicos/síntese química , Corantes Fluorescentes/síntese química , Humanos , Íons/análise , Estrutura Molecular , Imagem Óptica
9.
ACS Appl Mater Interfaces ; 11(17): 15276-15289, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30968687

RESUMO

Clinical diagnostics and therapeutics of tumors are significantly benefitted by the development of multifunctional theranostic agents, which integrate tumor targeting, imaging, and therapeutics. However, the integration of imaging and therapy functionalities to a unimolecular framework remains a great challenge. Herein, a family of amphiphilic gemini iridium(III) complexes (GIC), Ir1-Ir6, are synthesized and characterized. The presence of quaternary ammonium (QA) groups endows GIC with adjustable water solubility and excellent self-assembly properties. Spectroscopic and computational results reveal that introducing QA groups into cyclometalating ligands (CN ligands) can overcome the drawback of aggregation-caused emission quenching and ensure Ir1-Ir3 with high emission intensity and excellent singlet oxygen (1O2) generation ability in aqueous media. Cell-based assays indicate that Ir3 shows higher cellular uptake efficiency and localizes specifically in the mitochondria, as well as exhibits outstanding photostability and an impressive phototoxicity index with satisfactory performance in mitochondria-targeted imaging and photodynamic therapy (PDT) of tumor cells. Furthermore, in vivo studies further prove that Ir3 possesses excellent antitumor activity and remarkably inhibits the growth of the HepG2 cells under PDT treatment. Consequently, this study presents a promising strategy for designing clinical application potential multifunctional iridium complex theranostic agents for mitochondria-targeted imaging and PDT in a single molecular framework.


Assuntos
Complexos de Coordenação/química , Irídio/química , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Compostos de Amônio Quaternário/química , Oxigênio Singlete/metabolismo , Nanomedicina Teranóstica , Transplante Heterólogo
10.
Langmuir ; 34(16): 4908-4913, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29605998

RESUMO

Humidity sensors have received considerable attention in recent years because of their significance and wide applications in agriculture, industries, goods stores, and medical fields. However, the conventional humidity sensors usually possessed a complex sensing mechanism and low sensitivity and required a time-consuming, labor-intensive process. The exploration for an ideal sensing material to amplify the sensitivity of humidity sensors is still a big challenge. Herein, we developed a simple, low-cost, and scalable fabrication strategy to construct a highly sensitive humidity sensor based on polymer/gold nanoparticle (AuNP) hybrid materials. The hybrid polymer/AuNP aerogel was prepared by a simple freeze-drying method. By taking advantage of the conductivity of AuNPs and high surface area of the highly porous structure, the hybrid poly- N-isopropylacrylamide (PNIPAm)/AuNP aerogel showed high sensitivity to water molecules. Interestingly, the hybrid PNIPAm/AuNP aerogel-based humidity sensor can be used to detect human breath in different states, such as normal breath, fast breath, and deep breath, or in different individuals such as persons with illness, persons who are smoking, and persons who are normal, which is promising in practical flexible wearable devices for human health monitoring. In addition, the humidity sensor can be used in whistle tune recognition.


Assuntos
Testes Respiratórios/métodos , Géis/química , Ouro/química , Umidade , Nanopartículas Metálicas/química , Humanos , Polímeros/química , Água/química
11.
ACS Appl Mater Interfaces ; 10(11): 9379-9389, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29481033

RESUMO

Transition metal chalcogenides with hollow nanostructures have been considered as promising substitutes as precious metal electrocatalysts for energy conversion and storage. We synthesized NiCo2S4 double-shelled ball-in-ball hollow spheres (BHSs) via a simple solvothermal route and applied them in both dye-sensitized solar cells (DSSCs) and hydrogen evolution reactions (HERs) at the same time, which were clean and sustainable ways to convert energy. Benefiting from their remarkable structure features and advantageous chemical compositions, NiCo2S4 BHSs composed of tiny crystals possessed large surface area, well-defined interior voids, and high catalytic activity. The DSSC with NiCo2S4 BHSs under 100 mW cm-2 irradiation possessed a power conversion efficiency of 9.49% (Pt, 8.30%). Besides, NiCo2S4 BHSs as a HER catalyst also possessed a small onset overpotential (27.9 mV) and a low overpotential (89.7 mV at 10 mA cm-2) under alkaline conditions. Therefore, this work offers a sensible strategy to synthesize bifunctional electrocatalysts for DSSCs and HERs.

12.
ACS Appl Mater Interfaces ; 8(43): 29486-29495, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27740741

RESUMO

In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni0.33Co0.67Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA