Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4334, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773174

RESUMO

Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.

2.
ACS Appl Mater Interfaces ; 12(37): 42437-42445, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32840997

RESUMO

Underwater gas-bubble manipulation in aqueous environments is of great importance in industry and academia. Although the underwater gas bubble has been proved to be directionally transportable by various structures, transporting gas bubbles in 3D space remains a challenge. In this research, two kinds of tapered pillars, that is, ladderlike and helical ladderlike, were proposed for manipulating gas bubbles. To fabricate such unique structures, an improved alternative coating and etching method was developed. To meet the requirements of underwater gas-bubble transport, a modified gas-bubble slippery technology was also developed to enhance the aerophilic ability. The dynamics of the gas bubble was analyzed using a high-speed camera. The Laplace force that resulted from the geometry gradient was found to play a significant role in tuning the gas-bubble velocity. Through adjustments on the wettability, tilt angle, and geometry of each section of the tapered pillar, tuning the transport velocity from 113.9 ± 10.3 to 309.1 ± 5.8 mm/s becomes possible. On the basis of these findings, the helical ladderlike tapered pillar was fabricated and demonstrated to be able to transport gas bubbles in 3D space. These results may provide a new and systematic way to design and fabricate materials and structures for directional gas-bubble transport in 3D space.

3.
Opt Express ; 24(24): 27890-27898, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906357

RESUMO

A gas pressure sensor based on an antiresonant reflecting guidance mechanism in a hollow-core fiber (HCF) with an open microchannel is experimentally demonstrated for gas pressure sensing. The microchannel was created on the ring cladding of the HCF by femtosecond laser drilling to provide an air-core pressure equivalent to the external environment. The HCF cladding functions as an antiresonant reflecting waveguide, which induces sharp periodic lossy dips in the transmission spectrum. The proposed sensor exhibits a high pressure sensitivity of 3.592 nm/MPa and a low temperature cross-sensitivity of 7.5 kPa/°C. Theoretical analysis indicates that the observed high gas pressure sensitivity originates from the pressure induced refractive index change of the air in the hollow-core. The good operation durability and fabrication simplicity make the device an attractive candidate for reliable and highly sensitive gas pressure measurement in harsh environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA