Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cancer Lett ; 596: 216961, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823764

RESUMO

Extracellular vesicles are essential for intercellular communication and are involved in tumor progression. Inhibiting the direct release of extracellular vesicles seems to be an effective strategy in inhibiting tumor progression, but lacks of investigation. Here, we report a natural flavonoid compound, apigenin, could significantly inhibit the growth of hepatocellular carcinoma by preventing microvesicle secretion. Mechanistically, apigenin primarily targets the guanine nucleotide exchange factor ARHGEF1, inhibiting the activity of small G protein Cdc42, which is essential in regulating the release of microvesicles from tumor cells. In turn, this inhibits tumor angiogenesis related to VEGF90K transported on microvesicles, ultimately impeding tumor progression. Collectively, these findings highlight the therapeutic potential of apigenin and shed light on its anticancer mechanisms through inhibiting microvesicle biogenesis, providing a solid foundation for the refinement and practical application of apigenin.


Assuntos
Apigenina , Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Neovascularização Patológica , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Animais , Apigenina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/irrigação sanguínea , Camundongos , Linhagem Celular Tumoral , Proteína cdc42 de Ligação ao GTP/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Hep G2 , Camundongos Nus , Angiogênese
2.
Cancer ; 130(S8): 1524-1538, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38515388

RESUMO

BACKGROUND: Studies on various thrombopoietic agents for cancer treatment-induced thrombocytopenia (CTIT) in China are lacking. This study aimed to provide detailed clinical profiles to understand the outcomes and safety of different CTIT treatment regimens. METHODS: In this retrospective, cross-sectional study, 1664 questionnaires were collected from 33 hospitals between March 1 and July 1, 2021. Patients aged >18 years were enrolled who were diagnosed with CTIT and treated with recombinant interleukin 11 (rhIL-11), recombinant thrombopoietin (rhTPO), or a thrombopoietin receptor agonist (TPO-RA). The outcomes, compliance, and safety of different treatments were analyzed. RESULTS: Among the 1437 analyzable cases, most patients were treated with either rhTPO alone (49.3%) or rhIL-11 alone (27.0%). The most common combination regimen used was rhTPO and rhIL-11 (10.9%). Platelet transfusions were received by 117 cases (8.1%). In multivariate analysis, rhTPO was associated with a significantly lower proportion of platelet recovery, platelet transfusion, and hospitalization due to chemotherapy-induced thrombocytopenia (CIT) than rhIL-11 alone. No significant difference was observed in the time taken to achieve a platelet count of >100 × 109/L and chemotherapy dose reduction due to CIT among the different thrombopoietic agents. The outcomes of thrombocytopenia in 170 patients who received targeted therapy and/or immunotherapy are also summarized. The results show that the proportion of platelet recovery was similar among the different thrombopoietic agents. No new safety signals related to thrombopoietic agents were observed in this study. A higher proportion of physicians preferred to continue treatment with TPO-RA alone than with rhTPO and rhIL-11. CONCLUSIONS: This survey provides an overview of CTIT and the application of various thrombopoietic agents throughout China. Comparison of monotherapy with rhIL-11, rhTPO, and TPO-RA requires further randomized clinical trials. The appropriate application for thrombopoietic agents should depend on the pretreatment of platelets, treatment variables, and risk of bleeding. PLAIN LANGUAGE SUMMARY: To provide an overview of the outcome of cancer treatment-induced thrombocytopenia in China, our cross-sectional study analyzed 1437 cases treated with different thrombopoietic agents. Most of the patients were treated with recombinant interleukin 11 (rhIL-11) and recombinant thrombopoietin (rhTPO). rhTPO was associated with a significantly lower proportion of platelet recovery and platelet transfusion compared with rhIL-11.


Assuntos
Neoplasias , Trombocitopenia , Humanos , China , Estudos Transversais , Interleucina-11/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Estudos Retrospectivos , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico , Trombopoetina/uso terapêutico , Adulto Jovem , Adulto
3.
World J Clin Cases ; 11(24): 5692-5699, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37727708

RESUMO

BACKGROUND: Biliary adenomas that occur in the extrahepatic biliary tree are rare. It is difficult to distinguish it from cholangiocarcinoma or cholangiolithiasis by various imaging examinations, and it is very easy to be misdiagnosed. AIM: To evaluate the cumulative experiences including clinical characteristics and treatments of nine patients diagnosed with extrahepatic biliary adenoma admitted to the First Affiliated Hospital of Xi'an Jiaotong University from 2016 to 2022. METHODS: A total of nine patients were included in our study. The laboratory examinations, disease diagnosis, therapy and pathological characteristics, and follow-up of every patient were evaluated. RESULTS: Our cohort consisted of six females and three males with an average diagnosis age of 65.1 years (range 46-87). Six extrahepatic biliary adenomas were located in the common bile ducts and three in the hepatic duct. On initial presentation, all of the patients have symptom of biliary origin, including obstructive jaundice (4/9, 44.4%), abdominal pain (6/9, 66.7%), and fever (3/9, 33.3%). Preoperative imaging examination considered bile duct carcinoma in 6 cases and bile duct calculi in 3 cases. All the patients received surgical treatment and were confirmed by pathology as biliary adenoma. The symptoms improved significantly in all 9 patients after surgery. Seven of nine patients recovered well at follow-up without tumor recurrence. One patient died 2 mo after the surgery due to heart failure. One patient developed jaundice again 8 mo after surgery, underwent endoscopic retrograde cholangiopancreatography and biliary stent placement. CONCLUSION: Benign extrahepatic biliary tumors are rare and difficult to diagnosis preoperatively. Intraoperative choledochoscopy and timely biopsy may offer great advantages.

4.
Talanta ; 265: 124815, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348355

RESUMO

Cancer is one of the major diseases that seriously endanger the health of all mankind. Accurate diagnosis of early cancer is the most promising way to reduce cancer harm and improve patient survival. However, many developed fluorescent probes for cancer imaging only have the function of identifying one marker, which cannot meet the needs of accurate diagnosis. Here, a fluorescent nanoprobe (CPH@ZIF-90) utilizing ZIF-90 to encapsulate SO2-sensitive dye (CPH) is synthesized for the sequential detection of ATP and SO2. The nanoprobe first interacts with ATP to release CPH, thus increasing the fluorescence at 685 nm and realizing the near-infrared (NIR) fluorescence detection of ATP. Then, SO2 acts on the released CPH through nucleophilic addition, affecting the π-conjugated structure of CPH and resulting in enhanced fluorescence at 580 nm. CPH@ZIF-90 exhibits satisfactory sensitivity and selectivity for sequential detection of ATP and SO2. Excitedly, CPH@ZIF-90 can sequentially image the endogenous ATP and SO2 in cells, showing sensitive fluorescence changes in dual channels (red and green). Due to the NIR emission properties of CPH@ZIF-90 and its ability to enrich in tumor, it is applied to monitor ATP and SO2 in mice and distinguish normal mice from tumor mice. The ability of CPH@ZIF-90 to sequentially detect two cancer-related biomarkers makes it provide meaningful assistance in accurate early diagnosis of cancer.


Assuntos
Neoplasias , Dióxido de Enxofre , Animais , Camundongos , Trifosfato de Adenosina , Corantes Fluorescentes/química , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem
5.
Int J Biol Macromol ; 237: 123656, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796558

RESUMO

Under selective pressure, bacteria have evolved diverse defense systems against phage infections. The SMODS-associated and fused to various effector domains (SAVED)-domain containing proteins were identified as major downstream effectors in cyclic oligonucleotide-based antiphage signaling system (CBASS) for bacterial defense. Recent study structurally characterizes a cGAS/DncV-like nucleotidyltransferase (CD-NTase)-associated protein 4 from Acinetobacter baumannii (AbCap4) in complex with 2'3'3'-cyclic AMP-AMP-AMP (cAAA). However, the homologue Cap4 from Enterobacter cloacae (EcCap4) is activated by 3'3'3'-cyclic AMP-AMP-GMP (cAAG). To elucidate the ligand specificity of Cap4 proteins, we determined the crystal structures of full-length wild-type and K74A mutant of EcCap4 to 2.18 and 2.42 Å resolution, respectively. The DNA endonuclease domain of EcCap4 shares similar catalytic mechanism with type II restriction endonuclease. Mutating the key residue K74 in the conserved DXn(D/E)XK motif completely abolishes its DNA degradation activity. The potential ligand-binding cavity of EcCap4 SAVED domain is located adjacent to its N-terminal domain, significantly differing from the centrally located cavity of AbCap4 SAVED domain which recognizes cAAA. Based on structural and bioinformatic analysis, we found that Cap4 proteins can be classified into two types: the type I Cap4, like AbCap4, recognize cAAA and the type II Cap4, like EcCap4, bind cAAG. Several conserved residues identified at the surface of potential ligand-binding pocket of EcCap4 SAVED domain are confirmed by ITC experiment for their direct binding roles for cAAG. Changing Q351, T391 and R392 to alanine abolished the binding of cAAG by EcCap4 and significantly reduced the anti-phage ability of the E. cloacae CBASS system constituting EcCdnD (CD-NTase in clade D) and EcCap4. In summary, we revealed the molecular basis for specific cAAG recognition by the C-terminal SAVED domain of EcCap4 and demonstrates the structural differences for ligand discrimination among different SAVED-domain containing proteins.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Proteínas de Bactérias/química , Oligonucleotídeos , Ligantes , GMP Cíclico/metabolismo , Bactérias/metabolismo , AMP Cíclico
6.
Heliyon ; 8(11): e11503, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36411886

RESUMO

Metformin is a drug that has been applied in clinical use for many years for the treatment of type 2 diabetes mellitus (T2DM). It achieves its function through multiple targets and modulation of multiple signaling pathways. To date, the mechanism of the action of metformin is still not fully understood. Along with glycemic control, metformin has shown good inhibitory effects on the development of many tumors. Here, we elucidated that plasma exosomal microRNA-122-5p (miR-122) is closely related to the mechanism of metformin. MiR-122 regulates glycogen-glucose metabolism in hepatocytes or hepatocellular carcinoma cells (HCC) by inhibiting the phosphorylation of AMPK. Since miR-122 and metformin regulate glucose metabolism homeostasis through similar mechanisms, miR-122 can antagonize the effects of metformin. MiR-122 expression increases the sensitivity of hepatocytes or HCC to metformin. Conversely, decreased expression of miR-122 results in hepatocyte insensitivity to metformin. Therefore, significantly elevated levels of miR-122 in plasma exosomes of hepatocellular carcinoma patients could enhance their sensitivity to metformin. The results of the present study revealed a key regulatory role of plasma exosomal miR-122 on the molecular mechanism of metformin. The regulation of key molecules of related signaling pathways by miR-122 may lead to similar glycemic lowering and tumor suppression therapeutic effects as metformin. This provides new ideas for the development of new therapeutic strategies for hepatocellular carcinoma based on the mechanism of miR-122 and metformin.

7.
Zhongguo Fei Ai Za Zhi ; 25(11): 771-781, 2022 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-36419390

RESUMO

BACKGROUND: Acquired and primary resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is still the bottleneck of clinical treatment of advanced non-small cell lung cancer (NSCLC). STE029 is a novel anticancer drug which consists of 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGCR) inhibitor and novel cancer cell membrane targeting molecular. This study aimed to investigate the reversal mechanism of EGFR-TKI resistance by STE029 in lung adenocarcinoma. METHODS: CCK8 test was used to test the cell viability and survival rate of EGFR mutated PC9 cell (Gefitinib sensitive), PC9/BB4 cell (acquired Gefitinib resistant), and EGFR wild type A549 cell after treatment of STE029, Gefitinib or combination of both. EdU test was applied to detect changes in cell cycle and Hoechst 33258 was applied to detect apoptosis rate in overcoming the EGFR-TKI resistance. The activity of EGFR/PI3K/Akt, cell cycle and apoptosis signal pathways were examined. In vivo, nude mice were exposed to STE029, Gefitinib and STE029+Gefitinib for 5 wk. And the the tumor volume was measured and tumor weight was obtained on the last day. RESULTS: (1) PC9 cells was highly sensitive to Gefitinib, while PC9/BB4 and A549 cell showed significant resistance to Gefitinib treatment; (2) STE029+Gefitinib treatment could significantly decrease the 50% inhibitory concentrarion (IC50) of Gefitinib in PC9, PC9/BB4 and A549 cells (P<0.05, respectively); (3) In PC9 and PC9/BB4 cells, STE029+Gefitinib can block cell cycle and inhibit cell proliferation (P<0.001), while there was no significant difference in apoptosis rate among three drug intervention groups (P>0.05); However, apoptosis rate was increased in STE029+Gefitinib group in A549 cell (P<0.01), while no significance detected in cell proliferation (P>0.05). (4) In PC9 and PC9/BB4 cells, the combination of STE029 and Gefitinib could downregulate p-EGFR, p-Akt, p-Cyclin D1 and Cyclin D1 (P<0.001), and upregulate the expression of GSK-3ß (P<0.001), and the expression of cleaved caspase-8, caspase-8 cleaved caspase-9, caspase-9 showed no difference among groups (P>0.05). In A549 cells, the combination of STE029 and Gefitinib could downregulate p-Akt (P<0.001) and upregulate cleaved caspase-8 and cleaved caspase-9 (P<0.001); (5)In vivo, the combination of STE029 and Gefitinib effectively inhibited tumor development and progression compared to STE029 alone or Gefitinib alone, with significant difference (P<0.05) in PC9 and PC9/BB4 xenografted tumor. CONCLUSIONS: STE029 could sensitize Gefitinib by inhibiting EGFR/PI3K/Akt pathway, blocking the tumor cell cycle and proliferation and inducing apoptosis through caspase-8 and caspase-9 dependent pathway. STE029 deserves further investigations in overcoming EGFR-TKI resistance in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Gefitinibe/farmacologia , Caspase 9 , Caspase 8 , Ciclina D1 , Glicogênio Sintase Quinase 3 beta , Camundongos Nus , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB/genética
8.
Anal Chem ; 94(41): 14257-14264, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36210524

RESUMO

Cancer is one of the biggest public enemies of global health with its high morbidity and mortality. Achieving early diagnosis is the most effective means of reducing cancer harm, which requires the use of powerful tools to accurately identify biomarkers. However, most of the reported fluorescent probes for cancer diagnosis can only detect one substance, which makes it difficult to meet the requirements of high accuracy. Here, a fluorescent nanoprobe (CPQ@ZIF-90) for sequential detection of ATP and ONOO- is constructed by encapsulating the ONOO- sensitive unit CPQ within ZIF-90. CPQ@ZIF-90 first reacts with ATP to release CPQ, which greatly enhances the fluorescence at 740 nm. Then, the released CPQ continues to react with ONOO- and is oxidatively cleaved by ONOO- to form a coumarin product with a small π-conjugated structure, which significantly enhances the fluorescence at 510 nm. CPQ@ZIF-90 shows high sensitivity and selectivity for the detection of ATP and then ONOO-. Moreover, CPQ@ZIF-90 has good biocompatibility and successfully realizes the sequential detection of a dual-channel fluorescence change of ATP and ONOO- in living cells and zebrafish and accurately distinguishes normal cells from cancer cells. CPQ@ZIF-90 is expected to be a potential tool for accurate cancer diagnosis through sequential detection of two cancer markers.


Assuntos
Neoplasias , Ácido Peroxinitroso , Trifosfato de Adenosina , Animais , Biomarcadores , Cumarínicos , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Ácido Peroxinitroso/química , Peixe-Zebra
9.
Biomed Environ Sci ; 35(2): 133-140, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35197178

RESUMO

OBJECTIVE: To establish a sensitive, simple and rapid detection method for African swine fever virus (ASFV) B646L gene. METHODS: A recombinase-aided amplification-lateral flow dipstick (RAA-LFD) assay was developed in this study. Recombinase-aided amplification (RAA) is used to amplify template DNA, and lateral flow dipstick (LFD) is used to interpret the results after the amplification is completed. The lower limits of detection and specificity of the RAA assay were verified using recombinant plasmid and pathogenic nucleic acid. In addition, 30 clinical samples were tested to evaluate the performance of the RAA assay. RESULTS: The RAA-LFD assay was completed within 15 min at 37 °C, including 10 min for nucleic acid amplification and 5 minutes for LFD reading results. The detection limit of this assay was found to be 200 copies per reaction. And there was no cross-reactivity with other swine viruses. CONCLUSION: A highly sensitive, specific, and simple RAA-LFD method was developed for the rapid detection of the ASFV.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/radioterapia , Febre Suína Africana/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Recombinases/química , Sensibilidade e Especificidade , Suínos , Proteínas Virais/genética
10.
Nanoscale ; 14(10): 3808-3817, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35191447

RESUMO

Cancer is a major public health problem worldwide, and traditional chemotherapy or a single therapeutic strategy often fails to achieve expected results in cancer treatment. Thus, the development of a method to realize controlled drug delivery and synergistic therapy is required. Herein, MOF-based nanoparticles named RhI-DOX-GOD@ZIF-90 are synthesized using RhI (a near-infrared fluorescent dye), DOX (an anti-cancer drug) and GOD (glucose oxidase). RhI and DOX are encapsulated inside the ZIF-90 framework and GOD is loaded on the surface of ZIF-90. Owing to the fact that the ATP level in cancer cells is abnormally higher than that in normal cells, RhI-DOX-GOD@ZIF-90 nanoparticles are destructed only in cancer cells. RhI is released to give outstanding NIR emission and realize controlled drug delivery. DOX is released and cancer cells are killed by chemotherapy. Also, GOD is released to consume glucose and achieve the purpose of starving the cancer cells. By making full use of the advantages of near-infrared emission, RhI-DOX-GOD@ZIF-90 nanoparticles can be used to image ATP in tumor-bearing mice. At the same time, DOX and GOD can be released accurately at tumor sites of mice and excellent anti-tumor efficiency by synergistic chemotherapy and starvation therapy is achieved.


Assuntos
Doxorrubicina , Nanopartículas , Trifosfato de Adenosina , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Corantes Fluorescentes/farmacologia , Nanopartículas/uso terapêutico
11.
Nat Commun ; 13(1): 26, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013136

RESUMO

Mammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in ß-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2'3'-cGAMP-dependent signaling in eukaryotes.


Assuntos
Bactérias/metabolismo , Imunidade Inata , Proteínas de Membrana/química , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Fosfatos de Dinucleosídeos , Humanos , Interferons , Ligantes , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Prevotella
12.
Bone Marrow Transplant ; 57(1): 95-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34671120

RESUMO

The mutant burden of FLT3-ITD modulates its prognostic impact on patients with acute myeloid leukemia (AML). However, for patients with low allelic ratio (AR) FLT3-ITD (FLT3-ITDlow, AR < 0.5), clinical features, as well as genomic and transcriptomic profiles remain unclear, and evidence supporting allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first complete remission (CR1) remains controversial. This study aimed to elucidate the genomic features, prognosis, and transplantation outcome of FLT3-ITDIow in AML patients with intermediate-risk cytogenetics. FLT3-ITDlow was associated with a negative enrichment of the leukemic stem cell signature, a marked enrichment of the RAS pathway, and with higher frequencies of RAS pathway mutations, different from those with FLT3-ITDhigh. Concurrent CEBPA double mutations were favorable prognostic factors, whereas MLL-PTD, and mutations in splicing factors were unfavorable prognostic factors in FLT3-ITDlow patients. Patients with FLT3-ITDlow had a shorter overall survival (OS) and event-free survival (EFS) than those with FLT3wt. Allo-HSCT in CR1 was associated with a significantly longer OS and EFS compared with postremission chemotherapy in patients with FLT3-ITDlow. In conclusion, FLT3-ITDlow is associated with different mutational and transcriptomic profiles compared with FLT3-ITDhigh. The presence of concomitant poor-risk mutations exert negative prognostic impacts in patients with FLT3-ITDlow, who markedly benefit from allo-HSCT in CR1.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/terapia , Mutação , Nucleofosmina , Prognóstico , Indução de Remissão , Tirosina Quinase 3 Semelhante a fms/genética
13.
Mikrochim Acta ; 188(9): 287, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34350511

RESUMO

A near-infrared (NIR) fluorescence nanoprobe named RhI-DOX@ZIF-90 has been synthesized by wrapping the guest molecule (RhI and DOX) into ZIF-90 framework. The nanoprobe itself is non-fluorescent and the drug (DOX) is inactive. Upon the addition of ATP, the structure of RhI-DOX@ZIF-90 is degraded. The fluorescence of RhI is recovered and DOX is released. The nanoprobe can detect ATP with high sensitivity and selectivity. There is good linear relationship between the nanoprobe and ATP concentration from 0.25 to 10 mM and the detection limit is 0.10 mM. The nanoprobe has the ability to monitor the change of ATP level in living cells and DOX is released inducing apoptosis of cancer cells. RhI-DOX@ZIF-90 is capable of targeting mitochondria, which provides a basis for improving the efficiency of drug delivery by mitochondrial administration. In particular, the nanoprobe is preferentially accumulated in the tumor sites and detect ATP in tumor mice by fluorescence imaging using near-infrared fluorescence. At the same time, DOX can be released accurately in tumor sites and have good anti-tumor efficiency. So, this nanoprobe is a reliable tool to realize early diagnosis of cancer and improve effect of anticancer drug.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Preparações de Ação Retardada/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos
14.
Blood Adv ; 5(10): 2456-2466, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33999144

RESUMO

Next-generation sequencing (NGS) has been applied to measurable/minimal residual disease (MRD) monitoring after induction chemotherapy in patients with acute myeloid leukemia (AML), but the optimal time point for the test remains unclear. In this study, we aimed to investigate the clinical significance of NGS MRD at 2 different time points. We performed targeted NGS of 54 genes in bone marrow cells serially obtained at diagnosis, first complete remission (first time point), and after the first consolidation chemotherapy (second time point) from 335 de novo AML patients. Excluding DNMT3A, TET2, and ASXL1 mutations, which are commonly present in individuals with clonal hematopoiesis of indeterminate potential, MRD could be detected in 46.4% of patients at the first time point (MRD1st), and 28.9% at the second time point (MRD2nd). The patients with detectable NGS MRD at either time point had a significantly higher cumulative incidence of relapse and shorter relapse-free survival and overall survival. In multivariate analysis, MRD1st and MRD2nd were both independent poor prognostic factors. However, the patients with positive MRD1st but negative MRD2nd had a similar good prognosis as those with negative MRD at both time points. The incorporation of multiparameter flow cytometry and NGS MRD revealed that the presence of NGS MRD predicted poorer prognosis among the patients without detectable MRD by multiparameter flow cytometry at the second time point but not the first time point. In conclusion, the presence of NGS MRD, especially after the first consolidation therapy, can help predict the clinical outcome of AML patients.


Assuntos
Leucemia Mieloide Aguda , Quimioterapia de Consolidação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual , Prognóstico
15.
Nucleic Acids Res ; 49(8): 4725-4737, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836064

RESUMO

Mammalian cyclic GMP-AMP synthase (cGAS) and its homologue dinucleotide cyclase in Vibrio cholerae (VcDncV) produce cyclic dinucleotides (CDNs) that participate in the defense against viral infection. Recently, scores of new cGAS/DncV-like nucleotidyltransferases (CD-NTases) were discovered, which produce various CDNs and cyclic trinucleotides (CTNs) as second messengers. Here, we present the crystal structures of EcCdnD, a CD-NTase from Enterobacter cloacae that produces cyclic AMP-AMP-GMP, in its apo-form and in complex with ATP, ADP and AMPcPP, an ATP analogue. Despite the similar overall architecture, the protein shows significant structural variations from other CD-NTases. Adjacent to the donor substrate, another nucleotide is bound to the acceptor binding site by a non-productive mode. Isothermal titration calorimetry results also suggest the presence of two ATP binding sites. GTP alone does not bind to EcCdnD, which however binds to pppApG, a possible intermediate. The enzyme is active on ATP or a mixture of ATP and GTP, and the best metal cofactor is Mg2+. The conserved residues Asp69 and Asp71 are essential for catalysis, as indicated by the loss of activity in the mutants. Based on structural analysis and comparison with VcDncV and RNA polymerase, a tentative catalytic pathway for the CTN-producing EcCdnD is proposed.


Assuntos
Trifosfato de Adenosina/química , Enterobacter cloacae/química , Magnésio/química , Nucleotídeos Cíclicos/química , Nucleotidiltransferases/química , Sítios de Ligação , Varredura Diferencial de Calorimetria , Catálise , Cristalografia por Raios X , Enterobacter cloacae/enzimologia , Guanosina Trifosfato/química , Ligantes , Mutação , Nucleotidiltransferases/síntese química
16.
J Mol Neurosci ; 71(2): 245-251, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32617873

RESUMO

Metachromatic leukodystrophy(MLD) is an autosomal recessive hereditary neurodegenerative lysosomal storage disorder caused by the mutations in arylsulfatase A gene (ARSA), which results in the deficiency of ARSA enzyme. The common clinical characteristics of MLD are abnormal gait, and then gradually appears ataxia, spastic quadriplegia, optic atrophy, cortical blindness, and dementia. We describe two patients in China who were diagnosed with MLD and find that the four ARSA gene mutations (c.1115G>A, c.302G>T, c.893 G> T, and c.302G>T) are associated with MLD, in which c.893 G>T and c.302G>T are novel mutations by gene sequence and clinical manifestations, to further understand the relationship between MLD and ARSA gene.


Assuntos
Povo Asiático/genética , Cerebrosídeo Sulfatase/genética , Leucodistrofia Metacromática/genética , Mutação de Sentido Incorreto , Transplante de Medula Óssea , Pré-Escolar , Progressão da Doença , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Leucodistrofia Metacromática/etnologia , Leucodistrofia Metacromática/terapia , Masculino
17.
Am J Cancer Res ; 10(8): 2535-2545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905393

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or 2019 novel coronavirus (2019-nCoV), took tens of thousands of lives and caused tremendous economic losses. The main protease (Mpro) of SARS-CoV-2 is a potential target for treatment of COVID-19 due to its critical role in maturation of viral proteins and subsequent viral replication. Conceptually and technically, targeting therapy against Mpro is similar to target therapy to treat cancer. Previous studies show that GC376, a broad-spectrum dipeptidyl Mpro inhibitor, efficiently blocks the proliferation of many animal and human coronaviruses including SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), porcine epidemic diarrhea virus (PEDV), and feline infectious peritonitis virus (FIPV). Due to the conservation of structure and catalytic mechanism of coronavirus main protease, repurposition of GC376 against SARS-CoV-2 may be an effective way for the treatment of COVID-19 in humans. To validate this conjecture, the binding affinity and IC50 value of Mpro with GC376 was determined by isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) assay, respectively. The results showed that GC376 binds to SARS-CoV-2 Mpro tightly (KD = 1.6 µM) and efficiently inhibit its proteolytic activity (IC50 = 0.89 µM). We also elucidate the high-resolution structure of dimeric SARS-CoV-2 Mpro in complex with GC376. The cocrystal structure showed that GC376 and the catalytic Cys145 of Mpro covalently linked through forming a hemithioacetal group and releasing a sulfonic acid group. Because GC376 is already known as a broad-spectrum antiviral medication and successfully used in animal, it will be a suitable candidate for anti-COVID-19 treatment.

18.
Int J Dev Neurosci ; 80(6): 455-463, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32233090

RESUMO

Joubert syndrome (JS) is a rare clinically and genetically heterogeneous disease. Using whole or targeted exome sequencing, we identified four novel compound heterozygous mutations in chromosome 5 open reading frame 42 gene (C5orf42), including c.2876C>T (missense mutation) and c.3921+1G>A (splicing mutation), c.2292 -2delA (splicing mutation) and c.4067C>T (missense mutation), c.6997_6998insT (frameshift mutation) and c.8710C>T (nonsense mutation), c.3981G>C (nonsense mutation) and c.230 _233del (frameshift mutation), in four Chinese JS families. They were all inherited from their heterozygosis parents in the autosomal recessive inheritance mode. Pure JS clinical manifestations and mild neuroimaging findings were found in these patients. These verified the previous findings that C5orf42 mutations generally resulted in a purely neurological Joubert phenotype, and neuroimaging findings were mild in JS with C5orf42 mutations. Our report analyzed these C5orf42 mutations-associated phenotypes and neuroimaging findings in JS and updated the genetic variation spectrum of JS caused by C5orf42.These will help clinicians and geneticists reach a more accurate diagnosis for JS.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Retina/anormalidades , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , Fenótipo
19.
Biomed Environ Sci ; 33(3): 174-182, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32209176

RESUMO

OBJECTIVE: To develop a rapid, highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography. METHODS: First, we prepared a lateral flow assay test strip, and labeled the detection antibody using a fluorescent microsphere. Second, we optimized the antibody labeling conditions. Third, we optimized the detection conditions. Fourth, we created a working curve. Fifth, we conducted a methodological assessment of the established fluorescent microsphere immunochromatography method. Sixty-six clinical samples were tested, and we compared the established fluorescent microsphere immunochromatography with the quantitative ELISA method. RESULTS: According to the working curve, the detection limit of the method is 3.4 pg/mL, and the detection range is 3.4 pg/mL to 10 ng/mL. The average intra-assay recovery was 99.6%, and the Coefficient of Variation (CV) was 5.4%-8.6%; the average inter-assay recovery was 97.3%, and the CV was 8.5%-11%. The detection rate of fluorescent microsphere immunochromatography was higher than ELISA method, and had a good correlation with ELISA. CONCLUSION: The P24 antigen quantitative detection method based on near-infrared fluorescent microsphere immunochromatography has the advantages of rapid detection, high sensitivity, and wide detection range; thus, it is suitable for early clinical diagnosis and continuous monitoring of AIDS.


Assuntos
Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Proteína do Núcleo p24 do HIV/isolamento & purificação , HIV/isolamento & purificação , Microesferas , Cromatografia de Afinidade/instrumentação , Limite de Detecção
20.
Am J Cancer Res ; 10(12): 4538-4546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415017

RESUMO

The cell surface protein TMPRSS2 (transmembrane protease serine 2) is an androgen-responsive serine protease important for prostate cancer progression and therefore an attractive therapeutic target. Besides its role in tumor biology, TMPRSS2 is also a key player in cellular entry by the SARS-CoV viruses. The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has resulted in huge losses in socio-economy, culture, and human lives for which safe and effective cures are highly demanded. The main protease (Mpro/3CLpro) of SARS-CoV-2 is a critical enzyme for viral propagation in host cells and, like TMPRSS2, has been exploited for treatment of the infectious disease. Numerous natural compounds abundant in common fruits have been suggested with anti-coronavirus infection in the previous outbreaks of SARS-CoV. Here we show that screening of these compounds identified tannic acid a potent inhibitor of both SARS-CoV-2 Mpro and TMPRSS2. Molecular analysis demonstrated that tannic acid formed a thermodynamically stable complex with the two proteins at a KD of 1.1 mM for Mpro and 1.77 mM for TMPRSS2. Tannic acid inhibited the activities of the two proteases with an IC50 of 13.4 mM for Mpro and 2.31 mM for TMPRSS2. Mpro protein. Consistently, functional assays using the virus particles pseudotyped (Vpp) of SARS-CoV2-S demonstrated that tannic acid suppressed viral entry into cells. Thus, our results demonstrate that tannic acid has high potential of developing anti-COVID-19 therapeutics as a potent dual inhibitor of two independent enzymes essential for SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA