Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(12): 1457-1471, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978243

RESUMO

The G protein-coupled receptor ADGRE5 (CD97) binds to various metabolites that play crucial regulatory roles in metabolism. However, its function in the antiviral innate immune response remains to be determined. In this study, we report that CD97 inhibits virus-induced type-I interferon (IFN-I) release and enhances RNA virus replication in cells and mice. CD97 was identified as a new negative regulator of the innate immune receptor RIG-I, and RIG-1 degradation led to the suppression of the IFN-I signaling pathway. Furthermore, overexpression of CD97 promoted the ubiquitination of RIG-I, resulting in its degradation, but did not impact its mRNA expression. Mechanistically, CD97 upregulates RNF125 expression to induce RNF125-mediated RIG-I degradation via K48-linked ubiquitination at Lys181 after RNA virus infection. Most importantly, CD97-deficient mice are more resistant than wild-type mice to RNA virus infection. We also found that sanguinarine-mediated inhibition of CD97 effectively blocks VSV and SARS-CoV-2 replication. These findings elucidate a previously unknown mechanism through which CD97 negatively regulates RIG-I in the antiviral innate immune response and provide a molecular basis for the development of new therapeutic strategies and the design of targeted antiviral agents.


Assuntos
Infecções por Vírus de RNA , Vírus de RNA , Animais , Camundongos , Antivirais/farmacologia , Proteína DEAD-box 58/metabolismo , Imunidade Inata , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Vírus de RNA/genética , Vírus de RNA/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Vet Microbiol ; 259: 109127, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058703

RESUMO

MicroRNAs (miRNAs), as a kind of small noncoding RNAs, have been proved to play a regulatory role in virus infection. However, the role and mechanism of cellular miRNAs in bovine transient fever virus (BEFV) infection are largely unknown. In the present study, we found that bta-miR-101 was significantly up-regulated in the Madin-Darby Bovine Kidney (MDBK) cells upon BEFV infection. Notably, bta-miR-101 mimic dramatically inhibited BEFV replication, while bta-miR-101 inhibitor facilitated BEFV replication, suggesting that bta-miR-101 acted as an anti-viral host factor restraining BEFV replication. Subsequently, NF-κB repressing factor (NKRF) was identified as a target gene of bta-miR-101 by dual luciferase reporter assay, and bta-miR-101 mimic significantly down-regulated expression of NKRF, while bta-miR-101 inhibitor up-regulated its expression, respectively. Furthermore, NKRF could induce apoptosis, and favored the replication of BEFV. Finally, bta-miR-101 inhibited BEFV-induced apoptosis via targeting NKRF to suppress virus replication. In general, our study provides a novel mechanism for bta-miR-101 to exert its antiviral function, which provides a theoretical basis for the development of antiviral strategy.


Assuntos
Vírus da Febre Efêmera Bovina/genética , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Proteínas Repressoras/genética , Replicação Viral/genética , Animais , Bovinos , Linhagem Celular , Regulação para Baixo , Células HEK293 , Humanos , Rim/citologia , Regulação para Cima
3.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361422

RESUMO

DNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression. DDIT3 overexpression inhibited type I interferon (IFN-I) and IFN-stimulated gene production, thereby promoting BVDV replication, while DDIT3 knockdown promoted the antiviral innate immune response to suppress viral replication. DDIT3 promoted NF-κB-dependent ovarian tumor (OTU) deubiquitinase 1 (OTUD1) expression. Furthermore, OTUD1 induced upregulation of the E3 ubiquitin ligase Smurf1 by deubiquitinating Smurf1, and Smurf1 degraded MAVS in MDBK cells in a ubiquitination-dependent manner, ultimately inhibiting IFN-I production. Moreover, knocking out DDIT3 promoted the antiviral innate immune response to reduce BVDV replication and pathological changes in mice. These findings provide direct insights into the molecular mechanisms by which DDIT3 inhibits IFN-I production by regulating MAVS degradation.IMPORTANCE Extensive studies have demonstrated roles of DDIT3 in apoptosis and autophagy during viral infection. However, the role of DDIT3 in innate immunity remains largely unknown. Here, we show that DDIT3 is positively regulated in bovine viral diarrhea virus (BVDV)-infected Madin-Darby bovine kidney (MDBK) cells and could significantly enhance BVDV replication. Importantly, DDIT3 induced OTU deubiquitinase 1 (OTUD1) expression by activating the NF-κB signaling pathway, thus increasing intracellular Smurf1 protein levels to degrade MAVS and inhibit IFN-I production during BVDV infection. Together, these results indicate that DDIT3 plays critical roles in host innate immunity repression and viral infection facilitation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Diarreia Viral Bovina Tipo 1/fisiologia , Imunidade Inata , Fator de Transcrição CHOP/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Replicação Viral , Animais , Antivirais/antagonistas & inibidores , Antivirais/imunologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/patogenicidade , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
4.
Vet Microbiol ; 233: 174-183, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31176405

RESUMO

Bovine herpesvirus 1 (BHV-1) is an economically important pathogen of cattle and has led to significant consequences on the cattle industry worldwide. MicroRNAs (miRNAs) are a class of regulators that play critical roles in virus and host interaction. However, the roles of host miRNAs in BHV-1 infection remain largely unclear. In this study, a set of differentially expressed miRNAs by small RNA deep sequencing were analyzed in the Madin-Darby Bovine Kidney Cells (MDBK) infected with BHV-1 after 12 h, 24 h and 48 h post-infection compared to mock infection, and it was confirmed that bta-miR-2361 was significantly down-regulated. Moreover, bta-miR-2361 mimics transfection could inhibit BHV-1 replication. Combined with up-regulated genes from BHV-1-infected MDBK cells by deep RNA-sequencing and predicted by bioinformatics tools, early growth response 1 (EGR1) was putative target of bta-miR-2361. Furthermore, EGR1 was up-regulated during BHV-1 infection, and overexpression of EGR1 promoted BHV-1 replication whereas knockdown of EGR1 had the opposite effects. Subsequently, the target association between bta-miR-2361 and 3'UTR of EGR1 was further validated using a dual-luciferase reporter assay. In addition, overexpression of bta-miR-2361 resulted in decreased EGR1 mRNA and protein levels. Further mechanistic study showed that EGR1 stimulated BHV-1 UL46 promoter activity, but overexpression of bta-miR-2361 suppressed the production of UL46 gene. Collectively, this is the first study to reveal that bta-miR-2361 as a novel host factor regulates BHV-1 replication via directly targeting the EGR1 gene, which is a transcription factor that regulates viral UL46 gene of BHV-1. These results provide further insight into the study of BHV-1 pathogenesis.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Herpesvirus Bovino 1/fisiologia , MicroRNAs/genética , Replicação Viral , Animais , Bovinos , Linhagem Celular , Células Epiteliais , Regulação da Expressão Gênica , Herpesvirus Bovino 1/patogenicidade , Interações Hospedeiro-Patógeno , Regulação para Cima , Proteínas Virais/genética
5.
BMC Vet Res ; 14(1): 3, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301517

RESUMO

BACKGROUND: The bovine ephemeral fever virus (BEFV) glycoprotein neutralization site 1 (also referred as G1 protein), is a critical protein responsible for virus infectivity and eliciting immune-protection, however, binding peptides of BEFV G1 protein are still unclear. Thus, the aim of the present study was to screen specific polypeptides, which bind BEFV G1 protein with high-affinity and inhibit BEFV replication. METHODS: The purified BEFV G1 was coated and then reacted with the M13-based Ph.D.-7 phage random display library. The peptides for target binding were automated sequenced after four rounds of enrichment biopanning. The amino acid sequences of polypeptide displayed on positive clones were deduced and the affinity of positive polypeptides with BEFV G1 was assayed by ELISA. Then the roles of specific G1-binding peptides in the context of BEFV infection were analyzed. RESULTS: The results showed that 27 specific peptide ligands displaying 11 different amino acid sequences were obtained, and the T18 and T25 clone had a higher affinity to G1 protein than the other clones. Then their antiviral roles of two phage clones (T25 and T18) showed that both phage polypeptide T25 and T18 exerted inhibition on BEFV replication compared to control group. Moreover, synthetic peptide based on T18 (HSIRYDF) and T25 (YSLRSDY) alone or combined use on BEFV replication showed that the synthetic peptides could effectively inhibit the formation of cytopathic plaque and significantly inhibit BEFV RNA replication in a dose-dependent manner. CONCLUSION: Two antiviral peptide ligands binding to bovine ephemeral fever virus G1 protein from phage display peptide library were identified, which may provide a potential research tool for diagnostic reagents and novel antiviral agents.


Assuntos
Vírus da Febre Efêmera Bovina/fisiologia , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Antivirais , Bacteriófagos , Bovinos , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Febre Efêmera/metabolismo , Febre Efêmera/virologia , Vírus da Febre Efêmera Bovina/genética , Glicoproteínas/genética , Biblioteca de Peptídeos , Peptídeos/genética , Ligação Proteica
6.
Eye Sci ; 28(2): 103-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24396965

RESUMO

The femtosecond laser is a type of laser that can produce pulses of light of extremely short duration. The application of femtosecond laser in surgery results in no thermal effect or shock wave, so that this laser is unlikely to cause tissue injuries outside the irradiation area of the laser beam. The femtosecond laser shows promising applications in refractive surgery and corneal transplantation due to its high precision and predictability. In this paper, we review the clinical application of the femtosecond laser in refractive surgery and corneal transplantation.


Assuntos
Terapia a Laser/métodos , Procedimentos Cirúrgicos Refrativos/métodos , Humanos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA