Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(8): 1769-1775, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017437

RESUMO

Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion. Downregulation of microRNA (miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia. However, the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated. In this study, mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion. Agomir-455-5p, antagomir-455-5p, and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion (MCAO). The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood. Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue, reduced the cerebral infarct volume, and improved neurological function. Furthermore, primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion. miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels, inhibited microglia activation, and reduced the production of the inflammatory factors tumor necrosis factor-α and interleukin-1ß. These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response.

2.
Cancer Cell Int ; 21(1): 475, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496841

RESUMO

BACKGROUND: Xanthine dehydrogenase (XDH) is a critical enzyme involved in the oxidative metabolism of purines, pterin and aldehydes and a central component of the innate immune system. However, the prognostic value of XDH in predicting tumor-infiltrating lymphocyte abundance, the immune response, and survival in different cancers, including hepatocellular carcinoma (HCC), is still unclear. METHODS: XDH expression was analyzed in multiple databases, including Oncomine, the Tumor Immune Estimation Resource (TIMER), the Kaplan-Meier plotter database, the Gene Expression Profiling Interactive Analysis (GEPIA) database, and The Cancer Genome Atlas (TCGA). XDH-associated transcriptional profiles were detected with an mRNA array, and the levels of infiltrating immune cells were validated by immunohistochemistry (IHC) of HCC tissues. A predictive signature containing multiple XDH-associated immune genes was established using the Cox regression model. RESULTS: Decreased XDH mRNA expression was detected in human cancers originating from the liver, bladder, breast, colon, bile duct, kidney, and hematolymphoid system. The prognostic potential of XDH mRNA expression was also significant in certain other cancers, including HCC, breast cancer, kidney or bladder carcinoma, gastric cancer, mesothelioma, lung cancer, and ovarian cancer. In HCC, a low XDH mRNA level predicted poorer overall survival, disease-specific survival, disease-free survival, and progression-free survival. The prognostic value of XDH was independent of the clinical features of HCC patients. Indeed, XDH expression in HCC activated several immune-related pathways, including the T cell receptor, PI3K-AKT, and MAPK signaling pathways, which induced a cytotoxic immune response. Importantly, the microenvironment of XDHhigh HCC tumors contained abundant infiltrating CD8 + T cells but not exhausted T cells. A risk prediction signature based on multiple XDH-associated immune genes was revealed as an independent predictor in the TCGA liver cancer cohort. CONCLUSION: These findings suggest that XDH is a valuable prognostic biomarker in HCC and other cancers and indicate that it may function in tumor immunology. Loss of XDH expression may be an immune evasion mechanism for HCC.

3.
Tumour Biol ; 36(4): 2481-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25501507

RESUMO

MicroRNAs (MiRNAs) are small non-coding RNA molecules which act as important regulators of post-transcriptional gene expression by binding 3'-untranslated region (3'-UTR) of target messenger RNA (mRNA). In this study, we analyzed miRNA-34a (miR-34a) as a tumor suppressor in non-small cell lung cancer (NSCLC) H1299 cell line. The expression level of miR-34a in four different NSCLC cell lines, H1299, A549, SPCA-1, and HCC827, was significantly lower than that in the non-tumorigenic bronchial epithelium cell line BEAS-2B. In human NSCLC tissues, miR-34a expression level was also significantly decreased in pT2-4 compared with the pT1 group. Moreover, miR-34a mimic could inhibit the proliferation and triggered apoptosis in H1299 cells. Luciferase assays revealed that miR-34a inhibited TGFßR2 expression by targeting one binding site in the 3'-UTR of TGFßR2 mRNA. Quantitative real-time PCR (qRT-PCR) and Western blot assays verified that miR-34a reduced TGFßR2 expression at both mRNA and protein levels. Furthermore, downregulation of TGFßR2 by siRNA showed the same effects on the proliferation and apoptosis as miR-34a mimic in H1299 cells. Our results demonstrated that miR-34a could inhibit the proliferation and promote the apoptosis of H1299 cells partially through the downregulation of its target gene TGFßR2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Regiões 3' não Traduzidas/genética , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/biossíntese , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA