Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 2709-2732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510794

RESUMO

Purpose: Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods: MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/ß-Tricalcium phosphate (PCL/ß-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results: Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion: This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.


Assuntos
Fosfatos de Cálcio , Diabetes Mellitus , Melatonina , Nanocompostos , Humanos , Alicerces Teciduais/química , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2 , Células Endoteliais , Antioxidantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Heme Oxigenase-1 , Indutores da Angiogênese/farmacologia , Angiogênese , Estudos Prospectivos , Osteogênese , Transdução de Sinais , Regeneração Óssea
2.
Int J Biol Macromol ; 222(Pt A): 1175-1191, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181886

RESUMO

Diabetic individuals are frequently associated with increased fracture risk and poor bone healing capacity, and the treatment of diabetic bone defects remains a great challenge in orthopedics. In this study, an antioxidant hydrogel was developed using reduced glutathione grafted gelatine methacrylate (GelMA-g-GSH), followed by 3D printing to form a tissue engineering scaffold, which possessed appropriate mechanical property and good biocompatibility. In vitro studies displayed that benefitting from the sustained delivery of reduced glutathione, GelMA-g-GSH scaffold enabled to suppress the overproduction of reactive oxygen species (ROS) and reduce the oxidative stress of cells. Osteogenic experiments showed that GelMA-g-GSH scaffold exhibited excellent osteogenesis performance, with the elevated expression levels of osteogenesis-related genes and proteins. Further, RNA-sequencing revealed that activation of PI3K/Akt signaling pathway of MC3T3-E1 seeded on GelMA-g-GSH scaffold may be the underlying mechanism in promoting osteogenesis. In vivo, diabetic mice calvarial defects experiment demonstrated enhanced bone regeneration after the implantation of GelMA-g-GSH scaffold, as shown by micro-CT and histological analysis. In summary, 3D-printed GelMA-g-GSH scaffold can not only scavenge ROS, but also promote proliferation and differentiation of osteoblasts by activating PI3K/Akt signaling pathway, thereby accelerating bone repair under diabetes.


Assuntos
Diabetes Mellitus Experimental , Gelatina , Camundongos , Animais , Hidrogéis/farmacologia , Metacrilatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Glutationa , Espécies Reativas de Oxigênio , Regeneração Óssea , Impressão Tridimensional , Alicerces Teciduais , Osteogênese , Engenharia Tecidual , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA