Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 8421813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193067

RESUMO

Background: The specificity and sensitivity of hepatocellular carcinoma (HCC) diagnostic markers are limited, hindering the early diagnosis and treatment of HCC patients. Therefore, improving prognostic biomarkers for patients with HCC is urgently needed. Methods: HCC-related datasets were downloaded from the public databases. Differentially expressed genes (DEGs) between HCC and adjacent nontumor liver tissues were then identified. Moreover, the intersection of DEGs in four datasets (GSE138178, GSE77509, GSE84006, and TCGA) was used in the functional enrichment, and module genes were obtained by a coexpression network. Cox and Kaplan-Meier analyses were used to identify overall survival- (OS-) related genes from module genes. Area under the curve (AUC) > 0.9 of OS-related genes was then carried out in order to perform the protein-protein interaction network. The feature genes were identified by least absolute shrinkage and selection operator (LASSO). Furthermore, the hub gene was identified through the univariate Cox model, after which the correlation analysis between the hub gene and pathways was explored. Finally, infiltration in immune cell types in HCC was analyzed. Results: A total of 2,227 upregulated genes and 1,501 downregulated DEGs were obtained in all four datasets, which were mainly found to be involved in the cell cycle and retinol metabolism. Accordingly, 998 OS-related genes were screened to construct the LASSO model. Finally, 8 feature genes (BUB1, CCNB1, CCNB2, CCNA2, AURKB, CDC20, OIP5, and TTK) were obtained. CDC20 was shown to serve as a poor prognostic gene in HCC and was mainly involved in the cell cycle. Moreover, a positive correlation was noted between the high degree of infiltration with Th2 and CDC20. Conclusion: High expression of CDC20 predicted poor survival, as potential target in the treatment for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Fatores de Risco , Vitamina A
2.
Plant Physiol ; 190(3): 1747-1762, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976143

RESUMO

Wild rice (Oryza rufipogon) has a lower panicle seed setting rate (PSSR) and gamete fertility than domesticated rice (Oryza sativa), but the genetic mechanisms of this phenomenon remain unknown. Here, we cloned a null allele of OsMLH1, an ortholog of MutL-homolog 1 to yeast and mammals, from wild rice O. rufipogon W1943 and revealed a 5.4-kb retrotransposon insertion in OsMLH1 is responsible for the low PSSR in wild rice. In contrast to the wild-type, a near isogenic line NIL-mlh1 exhibits defective crossover (CO) formation during meiosis, resulting in reduced pollen viability, partial embryo lethality, and low PSSR. Except for the mutant of mismatch repair gene postmeiotic segregation 1 (Ospms1), all other MutL mutants from O. sativa indica subspecies displayed male and female semi-sterility similar to NIL-mlh1, but less severe than those from O. sativa japonica subspecies. MLH1 and MLH3 did not contribute in an additive fashion to fertility. Two types of MutL heterodimers, MLH1-PMS1 and MLH1-MLH3, were identified in rice, but only the latter functions in promoting meiotic CO formation. Compared to japonica varieties, indica cultivars had greater numbers of CO events per meiosis. Our results suggest that low fertility in wild rice may be caused by different gene defects, and indica and japonica subspecies have substantially different CO rates responsible for the discrepancy between the fertility of mlh1 and mlh3 mutants.


Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Animais , Oryza/genética , Retroelementos/genética , Saccharomyces cerevisiae/genética , Sementes/genética , Meiose/genética , Mamíferos/genética , Proteínas MutL/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA