Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
4.
Am J Cancer Res ; 14(3): 1139-1156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590399

RESUMO

Glioma, the most common primary malignant brain tumor, is characterized by infiltrating immune cells that contribute to tumor progression and therapeutic resistance. Tumor-associated macrophages (TAMs) constitute a significant proportion of these infiltrating immune cells and have been implicated in glioma progression. However, the underlying molecular mechanisms by which TAMs promote glioma progression remain elusive. In this study, we investigated the role of PU.1, a crucial transcription factor involved in myeloid cell development, in glioma-associated macrophage polarization and activation. First, bioinformatics and analysis of clinical glioma samples demonstrated a positive correlation between PU.1 expression in TAMs and disease severity. Further experiments using in vitro coculture systems revealed that the expression of PU.1 is increased in glioma cells vs. control cells. Importantly, PU.1-overexpressing macrophages exhibited a protumorigenic phenotype characterized by enhanced migration, invasion, and proliferation. Mechanistically, we found that PU.1-induced activation of the Bruton tyrosine kinase (BTK) signaling pathway led to Akt/mTOR pathway activation in macrophages, which further enhanced their protumorigenic functions. Furthermore, pharmacological inhibition of the BTK or Akt/mTOR pathway reversed the protumorigenic effects of macrophages in vitro and impaired their ability to promote glioma progression in vivo. In conclusion, our study elucidates a novel mechanism by which PU.1 induces the polarization and activation of TAMs in the glioma microenvironment. We highlight the significance of BTK-mediated Akt/mTOR pathway activation in driving the protumorigenic functions of TAMs. Targeting PU.1 and its downstream signaling pathways in TAMs may provide a promising therapeutic strategy to suppress glioma progression and improve patient outcomes.

5.
Comput Biol Med ; 174: 108457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599071

RESUMO

Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilação de DNA/genética , Glioma/imunologia , Glioma/genética , Glioma/metabolismo
6.
Cancer Med ; 12(24): 22170-22184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38093622

RESUMO

OBJECTIVE: As a single-transmembrane protein of the FXYD family, FXYD6 plays different roles under physiological and pathological status, especially in the nervous system. This study aims to identify FXYD6 as a biomarker for glioma, by analyzing its expression and methylation patterns. METHODS: Using TCGA and GTEx datasets, we analyzed FXYD6 expression in various tissues, confirming its levels in normal brain and different glioma grades via immunoblotting and immunostaining. FXYD6 biological functions were explored through enrichment analysis, and tumor immune infiltration was assessed using ESTIMATE and TIMER algorithms. Pearson correlation analysis probed FXYD6 associations with biological function-related genes. A glioma detection model was developed using FXYD6 methylation data from TCGA and GEO. Consistently, a FXYD6 methylation-based prognostic model was constructed for glioma via LASSO Cox regression. RESULTS: FXYD6 was observed to be downregulated in GBM and implicated in a range of cellular functions, including synapse formation, cell junctions, immune checkpoint, ferroptosis, EMT, and pyroptosis. Hypermethylation of specific FXYD6 CpG sites in gliomas was identified, which could be used to build a diagnostic model. Additionally, FXYD6 methylation-based prognostic model could serve as an independent factor as well. CONCLUSIONS: FXYD6 is a promising biomarker for the diagnosis and prognosis of glioma, with its methylation-based prognostic model serving as an independent factor. This highlights its potential in clinical application for glioma management.


Assuntos
Metilação de DNA , Glioma , Humanos , Biomarcadores , Glioma/diagnóstico , Glioma/genética , Algoritmos , Encéfalo , Prognóstico , Canais Iônicos
7.
Gut Microbes ; 15(2): 2263934, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795995

RESUMO

As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRß repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRß clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Fusobacterium nucleatum , Biomarcadores , Mutação , Receptores de Antígenos de Linfócitos T/genética
8.
Front Pharmacol ; 14: 1116558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063268

RESUMO

Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.

9.
Front Bioeng Biotechnol ; 10: 1020020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185433

RESUMO

Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.

10.
Small ; 17(37): e2101810, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365713

RESUMO

Disorders in the gut microbiota have been implicated in various diseases, such as inflammatory bowel diseases, diabetes, and cancers. Oral microecologics are of great importance due to their ability to directly intervene the gut microbiome as well as their noninvasiveness and low side effects, while have suffered from low bioavailability and a single therapeutic effect. Here, probiotics are coated with a therapeutic nanocoating for synergistically enhanced biotherapy, a method inspired by the robust protective and therapeutic effectiveness of silkworm cocoon. With its transition from a random coil to ß-sheet conformation, silk fibroin can self-assemble onto the surface of bacteria. By a simple layer-by-layer procedure, an entire nanocoating can be formed along with a near quantitative coating ratio and almost uninfluenced bacterial viability. Thanks to its protective barrier role and innate pharmaceutical activity, silk fibroin nanocoating endows the coated bacteria with a markedly improved survival against gastric insults and a synergistically enhanced therapeutic effect in a murine model of intestinal mucositis. This work demonstrates how therapeutic elements can be combined with probiotics via a simple coating strategy and proposes an alternative to enhance bioavailability and treatment efficacy of oral microecologics.


Assuntos
Bombyx , Fibroínas , Animais , Bactérias , Terapia Biológica , Camundongos , Viabilidade Microbiana
11.
Cell Death Dis ; 10(10): 717, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558707

RESUMO

Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-ß-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-ß-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-ß. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal/genética , Feminino , Ontologia Genética , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/secundário , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia , Transplante Heterólogo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA