Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113658, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175755

RESUMO

Poor skin wound healing, which is common in patients with diabetes, is related to imbalanced macrophage polarization. Here, we find that nutrition sensor GCN2 (general control nonderepressible 2) and its downstream are significantly upregulated in human skin wound tissue and mouse skin wound macrophages, but skin wound-related GCN2 expression and activity are significantly downregulated by diabetes and hyperglycemia. Using wound healing models of GCN2-deleted mice, bone marrow chimeric mice, and monocyte-transferred mice, we show that GCN2 deletion in macrophages significantly delays skin wound healing compared with wild-type mice by altering M1 and M2a/M2c polarization. Mechanistically, GCN2 inhibits M1 macrophages via OXPHOS-ROS-NF-κB pathway and promotes tissue-repairing M2a/M2c macrophages through eukaryotic translation initiation factor 2 (eIF2α)-hypoxia-inducible factor 1α (HIF1α)-glycolysis pathway. Importantly, local supplementation of GCN2 activator halofuginone efficiently restores wound healing in diabetic mice with re-balancing M1 and M2a/2c polarization. Thus, the decreased macrophage GCN2 expression and activity contribute to poor wound healing in diabetes and targeting GCN2 improves wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Macrófagos/metabolismo , Pele , Cicatrização
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901714

RESUMO

The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Aminoácidos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Subpopulações de Linfócitos T/metabolismo , Humanos
3.
J Immunol ; 209(11): 2181-2191, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426981

RESUMO

Fatty acid binding protein 5 (FABP5) is mainly involved in the uptake, transport, and metabolism of fatty acid in the cytoplasm, and its role in immune cells has been recognized in recent years. However, the role of FABP5 in macrophage inflammation and its underlying mechanisms were not fully addressed. In our study, the acute liver injury and sepsis mouse models were induced by i.p. injection of LPS and cecal contents, respectively. Oleic acid (0.6 g/kg) was injected four times by intragastric administration every week, and this lasted for 1 wk before the LPS or cecal content challenge. We found that myeloid-specific deletion of FABP5 mitigated LPS-induced acute liver injury with reduced mortality of mice, histological liver damage, alanine aminotransferase, and proinflammatory factor levels. Metabolic analysis showed that FABP5 deletion increased the intracellular unsaturated fatty acids, especially oleic acid, in LPS-induced macrophages. The addition of oleic acid also decreased LPS-stimulated macrophage inflammation in vitro and reduced acute liver injury in LPS-induced or cecal content-induced sepsis mice. RNA-sequencing and molecular mechanism studies showed that FABP5 deletion or oleic acid supplementation increased the AMP/ATP ratio and AMP-activated protein kinase (AMPK) activation and inhibited the NF-κB pathway during the inflammatory response to LPS stimulation of macrophages. Inhibiting AMPK activation or expression by chemical or genetic approaches significantly rescued the decreased NF-κB signaling pathway and inflammatory response in LPS-treated FABP5-knockout macrophages. Our present study indicated that inhibiting FABP5 or supplementation of oleic acid might be used for the treatment of sepsis-caused acute liver injury.


Assuntos
NF-kappa B , Sepse , Camundongos , Animais , Proteínas Quinases Ativadas por AMP , Lipopolissacarídeos , Transdução de Sinais , Macrófagos , Inflamação , Ácidos Oleicos , Proteínas de Neoplasias , Proteínas de Ligação a Ácido Graxo/genética
4.
Cell Rep ; 41(7): 111668, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384126

RESUMO

Fatty acids (FAs) are widely involved in diverse biological functions. In mice with myeloid-specific deletion of fatty acid-binding protein 5 (FABP5), OVA-induced allergic airway inflammation (AAI) is significantly exacerbated by increasing alternatively activated macrophages (M2). Fabp5 deficiency increases IL-4-induced M2 in vitro. In macrophages, Fabp5 deletion causes significant accumulation of free long-chain unsaturated FAs, such as oleic acid, but does not cause detectable changes to other groups of FAs. Interestingly, excessive uptake of oleic acid aggravates AAI pathogenesis, with increased M2 polarization in bronchoalveolar lavage fluid. Informatics and mechanistic studies indicate that Fabp5 deficiency may reprogram metabolic pathways by enhancing FA ß oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, in addition to producing more ATP through activation of the PPARγ signaling pathway, reshaping macrophages in favor of M2 polarization. These results emphasize the importance of FABP5 and oleic acid in AAI, suggesting preventive and therapeutic strategies for allergic asthma.


Assuntos
Asma , Ativação de Macrófagos , Camundongos , Animais , Asma/metabolismo , Macrófagos/metabolismo , Inflamação/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Oleicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA