RESUMO
Environmental hypoxia adversely impacts the reproduction of humans and animals. Previously, we showed that fetal hypoxia exposure led to granulosa cell (GC) autophagic cell death via the Foxo1/Pi3k/Akt pathway. However, the upstream regulatory mechanisms underlying GC dysfunction remain largely unexplored. Here, we tested the hypothesis that fetal hypoxia exposure altered gene expression programs in adult GCs and impaired ovarian function. We established a fetal hypoxia model in which pregnant mice were maintained in a high-plateau hypoxic environment from gestation day (E) 0--16.5 to study the impact of hypoxia exposure on the ovarian development and subsequent fertility of offspring. Compared with the unexposed control, fetal hypoxia impaired fertility by disordering ovarian function. Specifically, fetal hypoxia caused mitochondrial dysfunction, oxidant stress and autophagy in GCs in the adult ovary. RNA-seq analysis revealed that 437 genes were differentially expressed in the adult GCs of exposed animals. Western blotting results also revealed that fetal exposure induced high levels of hypoxia-inducible factor 1-alpha (Hif1a) expression in adult GCs. We then treated GCs isolated from exposed mice with PX-478, a specific pharmacological inhibitor of Hif-1a, and found that autophagy and apoptosis were effectively alleviated. Finally, by using a human ovarian granulosa-like tumor cell line (KGN) to simulate hypoxia in vitro, we showed that Hif1a regulated autophagic cell death in GCs through the Pi3k/Akt pathway. Together, these findings suggest that fetal hypoxia exposure induced persistent Hif1a expression, which impaired mitochondrial function and led to autophagic cell death in the GCs of the adult ovary.
RESUMO
The present study investigated the effect of connexin 43 (Cx43) on the regulation of osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) using low-frequency-pulsed electromagnetic fields (LPEMF). The BMSCs were isolated and cultured in vitro using adherent whole-bone marrow cultures. CCK-8 assay was used to detect the effects of LPEMF on the proliferation ability of BMSCs and alkaline phosphatase (ALP) activity and the levels of osteogenic marker genes were detected to evaluate the osteogenic ability change following LPEMF treatment. Lentiviral vector-mediated RNA interference was transfected into BMSCs to inhibit the expression of Cx43 and western blotting was used to detect Cx43 expression. The BMSCs showed the highest proliferation following LPEMF treatment at 80 Hz for 1 h. The results of ALP activity, osteogenic marker genes and Alizarin Red S staining showed that the osteogenic ability was notably increased following LPEMF treatment at 80 Hz for 1 h. Cx43 expression increased during the osteogenic differentiation of BMSCs following LPEMF treatment at 80 Hz. The enhanced osteogenic differentiation of the LPEMF-treated BMSCs were partially reversed when Cx43 expression was inhibited. LPEMF may promote the osteogenic differentiation of BMSCs by regulating Cx43 expression and enhancing osteogenic ability.
RESUMO
Background: Enterostomy is important for radical resection of colorectal cancer (CRC). Nevertheless, the notable occurrence of complications linked to enterostomy results in a reduction in patients' quality of life and impedes adjuvant therapy. This study sought to forecast early stoma-related complications (ESRCs) by leveraging easily accessible nutrition-inflammation markers in CRC patients. Methods: This study involved 470 individuals with colorectal cancer who underwent intestinal ostomy at Changhai Hospital Affiliated with Naval Medical University as the internal cohort. Between January 2016 and December 2018, the patients were enrolled and randomly allocated into a primary training group and a secondary validation group, with a ratio of 2:1 being upheld. The research encompassed collecting data on each patient's clinical and pathological status, along with preoperative laboratory results. Independent risk factors were identified through Lasso regression and multivariate analysis, leading to the development of clinical models represented by a nomogram. The model's utility was assessed using decision curve analysis, calibration curve, and ROC curve. The final model was validated using an external validation set of 179 individuals from January 2015 to December 2021. Results: Among the internal cohort, stoma complications were observed in 93 cases. Multivariate regression analysis confirmed that age, stoma site, and elevated markers (Mon, NAR, and GLR) in conjunction with diminished markers (GLB and LMR) independently contributed to an increased risk of ESRCs. The clinical model was established based on these seven factors. The training, internal, and external validation groups exhibited ROC curve areas of 0.839, 0.812, and 0.793, respectively. The calibration curve showed good concordance among the forecasted model with real incidence of ostomy complications. The model displayed outstanding predictive capability and is deemed applicable in clinical settings, as evidenced by Decision Curve Analysis. Conclusion: This study identified nutrition-inflammation markers (GLB, NAR, and GLR) in combination with demographic data as crucial predictors for forecasting ESRCs in colorectal cancer patients. A novel prognostic model was formulated and validated utilizing these markers.
RESUMO
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
Assuntos
Neoplasias , Humanos , Estresse Mecânico , Neoplasias/genética , Neoplasias/patologia , Carcinogênese , Canais Iônicos/genética , Temperatura BaixaRESUMO
BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. METHODS: Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets (n = 212, 111, 110). RESULTS: The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter-rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C-index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA-TACE improved RFS only in patients predicted to have high MVI risk and low survival scores (p < .001). CONCLUSIONS: Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.
Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Invasividade Neoplásica , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Microvasos/diagnóstico por imagem , Microvasos/patologia , Intervalo Livre de Doença , Recidiva Local de NeoplasiaRESUMO
OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.
Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Traumatismo por Reperfusão Miocárdica , Miocárdio , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Camundongos Endogâmicos C57BL , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transição Endotélio-MesênquimaRESUMO
Spinal cord injury (SCI) is a severe and disabling injury of the central nervous system, with complex pathological mechanisms leading to sensory and motor dysfunction. Pathological processes, such as oxidative stress, inflammatory response, apoptosis, and glial scarring are important factors that aggravate SCI. Therefore, the inhibition of these pathological processes may contribute to the treatment of SCI. Currently, the pathogenesis of SCI remains under investigation as SCI treatment has not progressed considerably. Resveratrol, a natural polyphenol with anti-inflammatory and antioxidant properties, is considered a potential therapeutic drug for various diseases and plays a beneficial role in nerve damage. Preclinical studies have confirmed that signaling pathways are closely related to the pathological processes in SCI, and resveratrol is believed to exert therapeutic effects in SCI by activating the related signaling pathways. Based on current research on the pathways of resveratrol and its role in SCI, resveratrol may be a potentially effective treatment for SCI. This review summarizes the role of resveratrol in promoting the recovery of nerve function by regulating oxidative stress, inflammation, apoptosis, and glial scar formation in SCI through various mechanisms and pathways, as well as the deficiency of resveratrol in SCI research and the current and anticipated research trends of resveratrol. In addition, this review provides a background for further studies on the molecular mechanisms of SCI and the development of potential therapeutic agents. This information could also help clinicians understand the known mechanisms of action of resveratrol and provide better treatment options for patients with SCI.
Assuntos
Traumatismos da Medula Espinal , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Traumatismos da Medula Espinal/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Polifenóis/farmacologia , Medula Espinal/metabolismoRESUMO
BACKGROUND: Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE: This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS: A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS: H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1ß, and activating the AMPK pathway. CONCLUSION: This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Assuntos
Alcaloides , Houttuynia , Óleos Voláteis , Plantas Medicinais , Houttuynia/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , EtnofarmacologiaRESUMO
Radiotherapy is one of the leading treatments for cancer. To accelerate the implementation of radiotherapy in clinic, various deep learning-based methods have been developed for automatic dose prediction. However, the effectiveness of these methods heavily relies on the availability of a substantial amount of data with labels, i.e. the dose distribution maps, which cost dosimetrists considerable time and effort to acquire. For cancers of low-incidence, such as cervical cancer, it is often a luxury to collect an adequate amount of labeled data to train a well-performing deep learning (DL) model. To mitigate this problem, in this paper, we resort to the unsupervised domain adaptation (UDA) strategy to achieve accurate dose prediction for cervical cancer (target domain) by leveraging the well-labeled high-incidence rectal cancer (source domain). Specifically, we introduce the cross-attention mechanism to learn the domain-invariant features and develop a cross-attention transformer-based encoder to align the two different cancer domains. Meanwhile, to preserve the target-specific knowledge, we employ multiple domain classifiers to enforce the network to extract more discriminative target features. In addition, we employ two independent convolutional neural network (CNN) decoders to compensate for the lack of spatial inductive bias in the pure transformer and generate accurate dose maps for both domains. Furthermore, to enhance the performance, two additional losses, i.e. a knowledge distillation loss (KDL) and a domain classification loss (DCL), are incorporated to transfer the domain-invariant features while preserving domain-specific information. Experimental results on a rectal cancer dataset and a cervical cancer dataset have demonstrated that our method achieves the best quantitative results with [Formula: see text], [Formula: see text], and HI of 1.446, 1.231, and 0.082, respectively, and outperforms other methods in terms of qualitative assessment.
Assuntos
Neoplasias Retais , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Redes Neurais de ComputaçãoRESUMO
This study investigated the protective effect of lobetyolin (LBT), a Q-marker isolated from the roots of Platycodon grandiflorum (Radix Platycodi), against cisplatin-induced cytotoxicity in human embryonic kidney (HEK293) cells. Results showed that LBT at 20 µM significantly prevented cisplatin-induced cytotoxicity by improving the viability of HEK293 cells, decreasing levels of MDA, and decreasing GSH content triggered by cisplatin. It also suppressed reactive oxygen species (ROS) levels. Molecular docking analysis revealed a strong binding affinity between LBT and the NF-κB protein, with a docking fraction of - 6.5 kcal/mol. These results provide compelling evidence suggesting a potential link between the visualization analysis of LBT and its protective mechanism, specifically implicating the NF-κB signaling pathway. LBT also reduced the expression level of tumor necrosis factor-alpha (TNF-α), phosphorylation NF-κB and IκBα in HEK293 cells which were increased by cisplatin exposure, leading to inhibition of inflammation. Furthermore, western blotting showed that LBT antagonized the up-regulation of Bax, cleaved caspase 3, 8, and 9 expression and inhibited the MAPK signaling pathway by down-regulating phosphorylation JNK, ERK, and p38, partially ameliorating cisplatin-induced cytotoxicity in HEK293 cells. Therefore, these results indicate that LBT has potentially protected renal function by inhibiting inflammation and apoptosis.
Assuntos
Cisplatino , NF-kappa B , Humanos , Cisplatino/toxicidade , Células HEK293 , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , InflamaçãoRESUMO
1,4,5,6,7,8-Hexahydropyrido[4,3-d]pyrimidine (PPM) promotes apoptosis of HepG2 cells and serves a role in tumor suppression. However, the role of microRNA (miRNA) regulation in initiating apoptosis remains unclear. Therefore, the present study performed reverse transcription-quantitative PCR to investigate the association between PPM and miRNA, which demonstrated that PPM upregulated the expression of miR-26b-5p. Wound healing and Transwell assays showed that PPM inhibited the migration and invasion of HepG2 cells, and EdU staining experiments showed that PPM inhibited the proliferation of HepG2 cells. Transfection with miR-26b-5p inhibitor reversed the effects of PPM on HepG2 cells. Flow cytometry results showed that PPM promoted apoptosis of HepG2 cells by upregulating miRNA (miR)-26b-5p, and Western blotting results showed that PPM promoted the expression of apoptosis-associated protein Bax and inhibited the expression of Bcl-2 by upregulating miR-26b-5p. Using a proteomic approach combined with bioinformatics analysis, CDK8 was identified as a potential target of miR-26b-5p and was downregulated by miR-26b-5p overexpression. However, PPM induced HepG2 cell cycle arrest without the involvement of miR-26b-5p. Western blotting results showed that PPM upregulation of miR-26b-5p suppresses NF-κB/p65 signaling pathway in HepG2 cells by targeting of CDK8. The present results suggested that miR-26b-5p may function as a target gene of PPM and may serve a role in hepatocellular carcinoma treatment.
Assuntos
Gestantes , Canal Medular , Feminino , Humanos , Gravidez , Decúbito Dorsal , Vértebras Lombares , Imageamento por Ressonância MagnéticaRESUMO
Colorectal cancer (CRC) is the malignant tumor with the highest incidence in the digestive system, and the gut microbiome plays a crucial role in CRC tumorigenesis and therapy. The gastrointestinal tract is the organ harboring most of the microbiota in humans. Changes in the gut microbiome in CRC patients suggest possible host-microbe interactions, thereby hinting the potential tumorigenesis, which provides new perspective for preventing, diagnosing, or treating CRC. In this review, we discuss the effects of gut microbiome dysbiosis on CRC, and reveal the mechanisms by which gut microbiome dysbiosis leads to CRC. Gut microbiome modulation with the aim to reverse the established gut microbial dysbiosis is a novel strategy for the prevention and treatment of CRC. In addition, this review summarizes that probiotic antagonize CRC tumorigenesis by protecting intestinal barrier function, inhibiting cancer cell proliferation, resisting oxidative stress, and enhancing host immunity. Finally, we highlight clinical applications of the gut microbiome, such as gut microbiome analysis-based biomarker screening and prediction, and microbe modulation-based CRC prevention, treatment enhancement, and treatment side effect reduction. This review provides the reference for the clinical application of gut microbiome in the prevention and treatment of CRC.
Assuntos
Carcinogênese , Neoplasias Colorretais , Disbiose , Microbioma Gastrointestinal , Humanos , Transformação Celular Neoplásica , Neoplasias Colorretais/patologia , Disbiose/complicaçõesRESUMO
Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.
Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Juncional/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Background: The incidence of papillary thyroid carcinoma (PTC) in children and adolescents has increased, but the data on long-term outcomes are limited. There are few literatures on the clinicopathological characteristics and prognosis of PTC in children and adolescents in China. Therefore, it is necessary to identify clinicopathological features to precisely predict clinical prognosis and to help choose the optimal method and perform the best therapeutic regimen. Methods: This study was a retrospective analysis of patients undergoing thyroidectomy at Tianjin Medical University Cancer Institute and Hospital. We analyzed the factors related to the clinicopathological features and prognosis of PTC in children and adolescents. Results: A total of 95 juvenile PTC patients who underwent thyroidectomy were enrolled. Our research found that patients with younger age (<14 years) were predominantly multifocal and have positive preoperative thyroglobulin (Tg) and higher recurrence rate, and their number of lymph node metastases (LNMs) was more than that of the older group (14-18 years). Maximal tumor size >2 cm, T stage, and multifocality were the risk factors for LNM and the number of LNM (p < 0.05). Multivariate analysis displayed the number of central LNM as the independent risk factor for lateral LNM, and multifocality was the independent risk factor for the number of central and lateral LNM. Younger age at diagnosis, positive preoperative thyroid-stimulating hormone (TSH), maximal tumor size >2 cm, lateral LNM, number of LNM, N staging, and American Thyroid Association (ATA) pediatric risk were related to poor prognosis in PTC patients (p < 0.05). Cox regression analysis found that younger age at diagnosis and positive preoperative TSH were independent risk factors for recurrence of PTC in children and adolescents. Conclusions: Our study showed that the clinicopathological characteristics of younger age compared with older age were as follows: highly aggressive, prone to metastases, and higher recurrence rate. In our opinion, patients with characteristics such as younger age at diagnosis, positive preoperative TSH, maximal tumor size >2 cm, lateral LNM, and number of LNM >5 may be considered for prophylactic or therapeutic dissection of additional metastatic LNs by high-volume surgeons to prevent and reduce the recurrence rate of patients during long-term follow-up.
RESUMO
CONTEXT: Jinlida (JLD) as a traditional Chinese medicine formula has been used to treat type 2 diabetes mellitus (T2DM) and studies have shown its anti-obesity effect. OBJECTIVE: To investigate the therapeutic effects of JLD in a mouse model of non-alcoholic fatty liver (NAFL). MATERIALS AND METHODS: C57BL/6J mice were divided into three groups and fed a low-diet diet (LFD), high-fat diet (HFD), or HFD + JLD (3.8 g/kg) for 16 weeks, respectively. The free fatty acids-induced lipotoxicity in HepG2 cells were used to evaluate the anti-pyroptotic effects of JLD. The pharmacological effects of JLD on NAFL were investigated by pathological examination, intraperitoneal glucose and insulin tolerance tests, western blotting, and quantitative real-time PCR. RESULTS: In vivo studies showed that JLD ameliorated HFD-induced liver injury, significantly decreased body weight and enhanced insulin sensitivity and improved glucose tolerance. Furthermore, JLD suppressed both the mRNA expression of caspase-1 (1.58 vs. 2.90), IL-1ß (0.93 vs. 3.44) and IL-18 (1.34 vs. 1.60) and protein expression of NLRP3 (2.04 vs. 5.71), pro-caspase-1 (2.68 vs. 4.92) and IL-1ß (1.61 vs. 2.60). In vitro, JLD inhibited the formation of lipid droplets induced by 2 mM FFA (IC50 = 2.727 mM), reduced the protein expression of NLRP3 (0.74 vs. 2.27), caspase-1 (0.57 vs. 2.68), p20 (1.67 vs. 3.33), and IL-1ß (1.44 vs. 2.41), and lowered the ratio of p-IKB-α/IKB-α (0.47 vs. 2.19). CONCLUSION: JLD has a protective effect against NAFLD, which may be related to its anti-pyroptosis, suggesting that JLD has the potential as a novel agent in the treatment of NAFLD.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Piroptose/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Glucose/metabolismo , Células Hep G2 , Hepatócitos/patologia , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Many studies have shown that aflatoxin B1 (AFB1) can cause cytotoxicity in numerous cells and organs induced by oxidative stress. However, the toxic effects and related mechanism of AFB1 on the microglia cells in the spinal cords have not been studied yet. Our results showed that AFB1 significantly reduced the number of microglia cells, increased the oxidants (malonaldehyde and hydrogen peroxide) but decreased the anti-oxidants (superoxide dismutase and total antioxidant capacity) in a dose dependent manner in mice spinal cords. In addition, AFB1 significantly increased the oxidative stress, promoted apoptosis and cell cycle arrest in G2-M phase, and activated NF-κB phosphorylation in BV2 microglia cells. However, the addition of active oxygen scavenger N-acetylcysteine can significantly reduce the ROS production, improve cell cycle arrest, reduce apoptosis, and the expression of phosphorylated NF-κB in BV2 microglia cells. These results indicate that AFB1 induces microglia cells apoptosis through oxidative stress by activating NF-κB signaling pathway.
Assuntos
Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Microglia/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Medula Espinal/efeitos dos fármacosRESUMO
Objectives: Chronic myeloid leukemia (CML) is a malignant tumor of the blood system. Gö6976, as a type of indolocarbazole and shows strong antitumor effects, but there have been no reports on the effect of Gö6976 on CML. The objectives of this research were: (1) to explore the impact of Gö6976 on CML in vitro and in vivo; and (2) to explore the drug toxicity of Gö6976 to normal cells and animals.Methods:K562 cells and CML mice were used to explore the effect of Gö6976 on CML. Peripheral blood mononuclear cells (PBMCs), CD34+ cells, and healthy mice were used to explore the drug toxicity of Gö6976.Results: Cell experiments showed that Gö6976 could inhibit the proliferation of K562 cells and enhance the inhibitory effects of imatinib at 5 µM and 10 µM, but it had little effect on CD34+ cells or PBMCs at concentrations less than 5 µM. Animal experiments showed that 2.5 mg/kg Gö6976 could effectively inhibit the development of CML in mice, and it had almost no effects on healthy mice at 2.5 mg/kg and 10 mg/kg.Discussion: Because of the direct inhibitory effect of Gö6976 on CML and its pharmacological enhancement effect on imatinib, it is foreseeable that Gö6976 could become a new type of anti-CML medicine. And the further research is needed.Conclusion: Our findings verified that Gö6976 could effectively inhibit CML in vitro and in vivo, and it is almost nontoxic to hematopoietic cells, immune cells, and healthy mice.
Assuntos
Carbazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Animais , Carbazóis/agonistas , Agonismo de Drogas , Humanos , Mesilato de Imatinib/agonistas , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In order to obtain new anti-hepatoma drugs with low toxicity, some 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidines (PPMs, 4a-t) were synthesized in this study. Many of them showed significant anti-hepatoma effects against HCC cells and low toxicity toward HHL-5 cells. Combined with their anti-hepatoma activity and toxicity, 4-CF3-substituted 4k was selected as an effective lead compound. Preliminary mechanistic studies revealed that 4k could up-regulate the expression levels of Bax and caspase-3 proteins, down-regulate the expression levels of Bcl-2 protein, promote significant apoptosis of HepG2, and block cells in G2-M phase to prevent cells from completing mitosis. Also, 4k could significantly inhibit the activation of PI3K/AKT/NF-κB pathway by blocking the phosphorylation of PI3K, AKT, NF-κB/p65 and IFN-γ-induced nuclear transport. Docking analysis showed that 4k could reasonably bind to the active sites of Bcl-2, NF-κB/p65, PI3K and AKT. This result suggested that 4k could be used as a new type of NF-κB inhibitor, which provides a scientific basis for further research into the treatment of hepatoma.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Descoberta de Drogas , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-AtividadeRESUMO
OBJECTIVES: To explore the expression and correlation of Omentin-1 and miR-502-3p in serum of patients with osteoporotic fracture (OPF). METHODS: Sixty OPF patients diagnosed and treated in our hospital from June 2018 to December 2019 were included in group A. Fifty-six osteoporosis patients without fractures were included in group B. Omentin-1 and miR-502-3p levels were detected by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (qRT-PCR). Their predictive value for diagnostic efficiency was assessed by ROC curve. Spearman's rank correlation test was used for correlation analysis. The risk factors related to the prognosis of OPF were analyzed by Logistic univariate and multivariate analysis. RESULTS: The expression of Omentin-1 and miR-502-3p in group A was markedly lower than in group B (P<0.001). Spearman correlation analysis showed that in OPF, there was a negative correlation between serum Omentin-1 and TNF-α (r=0.8579, P<0.001), a negative correlation between serum miR-502-3p and TNF-α (r= 0.8653, P<0.001), and a positive correlation between serum Omentin-1 and miR-502-3p (r= 0.8764, P<0.001). CONCLUSIONS: Omentin-1 and miR-502-3p were down-regulated in serum of patients with OPF, both of which could be used as potential biomarkers for the diagnosis and disease evaluation of OPF.