Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 18(7): 1099-1109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234826

RESUMO

Cancer-related venous thromboembolisms (VTE) are associated with metastasis and reduced survival in patients with urothelial cancer of the bladder. Although previous reports suggest the contribution of tissue factor and podoplanin, the mechanistic linkage between VTE and bladder cancer cell-derived molecules is unknown. Therefore, we compared distinct procoagulant pathways in four different cell lines. In vitro findings were further confirmed by microfluidic experiments mimicking the pathophysiology of tumor blood vessels and in tissue samples of patients with bladder cancer by transcriptome analysis and immunohistology. In vitro and microfluidic experiments identified bladder cancer-derived VEGF-A as highly procoagulant because it promoted the release of von Willebrand factor (VWF) from endothelial cells and thus platelet aggregation. In tissue sections from patients with bladder cancer, we found that VWF-mediated blood vessel occlusions were associated with a poor outcome. Transcriptome data further indicate that elevated expression levels of enzymes modulating VEGF-A availability were significantly connected to a decreased survival in patients with bladder cancer. In comparison with previously postulated molecular players, we identified tumor cell-derived VEGF-A and endothelial VWF as procoagulant mediators in bladder cancer. Therapeutic strategies that prevent the VEGF-A-mediated release of VWF may reduce tumor-associated hypercoagulation and metastasis in patients with bladder cancer. IMPLICATIONS: We identified the VEGF-A-mediated release of VWF from endothelial cells to be associated with bladder cancer progression.


Assuntos
Carcinoma de Células de Transição/metabolismo , Células Endoteliais/citologia , Neoplasias da Bexiga Urinária/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Progressão da Doença , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas Analíticas Microfluídicas , Metástase Neoplásica , Proteômica , Neoplasias da Bexiga Urinária/genética
2.
Sci Rep ; 10(1): 2024, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029783

RESUMO

The transmembrane protein claudin-1 is a major component of epidermal tight junctions (TJs), which create a dynamic paracellular barrier in the epidermis. Claudin-1 downregulation has been linked to atopic dermatitis (AD) pathogenesis but variable levels of claudin-1 have also been observed in healthy skin. To elucidate the impact of different levels of claudin-1 in healthy and diseased skin we determined claudin-1 levels in AD patients and controls and correlated them to TJ and skin barrier function. We observed a strikingly broad range of claudin-1 levels with stable TJ and overall skin barrier function in healthy and non-lesional skin. However, a significant decrease in TJ barrier function was detected in lesional AD skin where claudin-1 levels were further reduced. Investigations on reconstructed human epidermis expressing different levels of claudin-1 revealed that claudin-1 levels correlated with inside-out and outside-in barrier function, with a higher coherence for smaller molecular tracers. Claudin-1 decrease induced keratinocyte-autonomous IL-1ß expression and fostered inflammatory epidermal responses to non-pathogenic Staphylococci. In conclusion, claudin-1 decrease beyond a threshold level results in TJ and epidermal barrier function impairment and induces inflammation in human epidermis. Increasing claudin-1 levels might improve barrier function and decrease inflammation and therefore be a target for AD treatment.


Assuntos
Claudina-1/metabolismo , Dermatite Atópica/imunologia , Epiderme/patologia , Junções Íntimas/patologia , Adulto , Biópsia , Estudos de Casos e Controles , Células Cultivadas , Claudina-1/análise , Claudina-1/genética , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Regulação para Baixo , Epiderme/imunologia , Epiderme/microbiologia , Feminino , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Interleucina-1beta/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Staphylococcus/imunologia , Staphylococcus/isolamento & purificação , Perda Insensível de Água/imunologia , Adulto Jovem
3.
PLoS One ; 11(5): e0155582, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27219110

RESUMO

Triterpenes from the outer bark of birch are known for various pharmacological effects including enhanced wound healing (WH). A birch bark dry extract (TE) obtained by accelerated solvent extraction showed the ability to form oleogels when it is suspended in oils. Consistency of the oleogels and the dissolved amount of triterpenes varies largely with the used oil. Here we wanted to know to what extent different oils and formulations (oleogel versus o/w emulsion) influence WH. Looking at the plain oils, medium-chain triglycerides (MCT) enhanced WH (ca. 1.4-fold), while e.g. castor oil (ca.0.3-fold) or light liquid paraffin (LLP; ca. 0.5-fold) significantly decreased WH. Concerning the respective oleogels, TE-MCT showed no improvement although the solubility of the TE was high. In contrast, the oleogel of sunflower oil which alone showed a slight tendency to impair WH, enhanced WH significantly (ca. 1.6-fold). These results can be explained by release experiments where the release rate of betulin, the main component of TE, from MCT oleogels was significantly lower than from sunflower oil oleogels. LLP impaired WH as plain oil and even though it released betulin comparable to sunflower oil it still results in an overall negative effect of the oleogel on WH. As a further formulation option also surfactant free o/w emulsions were prepared using MCT, sunflower oil and LLP as a nonpolar oil phase. Depending on the preparation method (suspension or oleogel method) the distribution of the TE varied markedly and affected also release kinetics. However, the released betulin was clearly below the values measured with the respective oleogels. Consequently, none of the emulsions showed a significantly positive effect on WH. In conclusion, our data show that the oil used as a vehicle influences wound healing not only by affecting the release of the extract, but also by having its own vehicle effect on wound healing. This is also of importance for other applications where drugs have to be applied in non-polar vehicles because these solvents likely influence the outcome of the experiment substantially.


Assuntos
Betula/química , Óleos de Plantas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Composição de Medicamentos , Modelos Biológicos , Compostos Orgânicos/farmacologia , Casca de Planta/química , Extratos Vegetais/farmacologia , Suínos
4.
Diabetes Care ; 31(1): 114-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17898090

RESUMO

OBJECTIVE: Wound healing is known to require a well-organized balance of numerous factors, e.g., cytokines, matrix metalloproteinases (MMPs), and their inhibitors, as well as direct cell-cell communication (connexins). Disruption of this balance may lead to the formation of chronic wounds such as diabetic foot ulcers. The transplantation of autologous keratinocytes is a promising therapy for diabetic foot ulcers; however, little is known about their characteristics on a molecular level. Therefore, we intended to characterize transplanted keratinocytes from diabetic and nondiabetic origin before and after transplantation. RESEARCH DESIGN AND METHODS: We isolated human keratinocytes from diabetic and nondiabetic origins and transplanted them into an ex vivo wound healing model. To characterize the keratinocytes, we investigated mRNA expression of MMP-1, MMP-2, and MMP-9; tissue inhibitor of MMP (TIMP)-1 and TIMP-2; interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha; Cx26 (connexin 26) and Cx43; and, for connexins, immunolocalization. RESULTS: We found no significantly increased expression of the molecules investigated in cultured keratinocytes from diabetic compared with nondiabetic origin, even though there were significant differences for MMP-2, IL-1beta, and TNF-alpha in skin biopsies. Expression of IL-1beta was significantly lower in keratinocytes from diabetic origin. In the course of wound healing, differences in the dynamics of expression of MMP-1, IL-1beta, and Cx43 were observed. CONCLUSIONS: Our results suggest that keratinocytes from diabetic origin are as capable for transplantation into chronic wounds as keratinocytes from healthy origin at the starting point of therapy. However, differences in expression dynamics later on might reflect the systemic influence of diabetes resulting in a memory of the transplanted keratinocytes.


Assuntos
Conexinas/genética , Citocinas/genética , Diabetes Mellitus/genética , Queratinócitos/fisiologia , Metaloproteinases da Matriz/genética , Adulto , Idoso , Biópsia , Técnicas de Cultura de Células , Conexina 26 , Primers do DNA , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Feminino , Humanos , Queratinócitos/citologia , Queratinócitos/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação , Valores de Referência
5.
J Invest Dermatol ; 127(10): 2453-62, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17495958

RESUMO

Cutaneous wound healing is a well-coordinated process that includes inflammation, proliferation, and differentiation. Activator protein 1 (AP-1) subunits have been implicated in the regulation of genes important for these processes and have been shown to be involved in wound healing. However, investigation of human healing and non-healing wounds in vivo and ex vivo, and the comparative analysis of several members of the Jun and Fos families are still missing. Here, we show that normal human epidermal wound healing is biphasic. In the first phase all AP-1 subunits investigated, that is c-Jun, Jun B, Jun D, c-Fos, and Fos B are absent from the nuclei at the wound margins/leading edges. This downregulation coincides with that of the gap junction protein connexin 43. Later on, c-Jun, Jun B, Jun D, and c-Fos reappear in the nuclei of the leading edges in a time-dependent manner. In non-healing wounds, a more intensive staining of keratinocytes at the wound margins is often observed. Our findings suggest that coordinated down- and upregulation of the various AP-1 subunits in the course of epidermal wound healing is important for its undisturbed progress, putatively by influencing inflammation and cell-cell communication.


Assuntos
Epiderme/metabolismo , Fator de Transcrição AP-1/metabolismo , Cicatrização/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Diferenciação Celular/fisiologia , Proliferação de Células , Conexina 43/metabolismo , Regulação para Baixo/fisiologia , Epiderme/patologia , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação para Cima/fisiologia
6.
Eur J Cell Biol ; 84(2-3): 259-71, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15819406

RESUMO

Human Merkel cells were first described by Friedrich S. Merkel in 1875 and named "Tastzellen" (touch cells) assuming a sensory touch function within the skin. Only ultrastructural research revealed their characteristics such as dense-core granules, plasma membrane spines and dendrites as well as a loosely arranged cytoskeleton. Biochemical analysis identified the expression of very specific cytokeratins (most notably CK 20) allowing the immunohistochemical detection of Merkel cells. In humans, they occur within the basal epidermis, being concentrated in eccrine glandular ridges of glabrous skin and in Haarscheiben of hairy skin, within belt-like clusters of hair follicles, and in certain mucosal tissues. Within the human skin, the dense-core granules contain heterogeneously distributed neuropeptides, some of which might work as neurotransmitters through which Merkel cells and their associated nerves exert their classical function as slowly adapting mechanoreceptors type I. This is the case in the Haarscheiben, small sensory organs containing keratinocytes with a special program of differentiation that includes the expression of CK 17 and Ber-EP4. Other peptides may act as growth factors and thus might participate in growth, differentiation and homeostasis of cutaneous structures. It is not yet clear whether the Merkel cell carcinomas, aggressive skin carcinomas, indeed arise from Merkel cells. We summarize and discuss data on the distribution, function and heterogeneity of human Merkel cells in normal and diseased skin.


Assuntos
Células de Merkel/fisiologia , Adulto , Idoso , Proteínas do Citoesqueleto/fisiologia , Imunofluorescência , Humanos , Masculino , Células de Merkel/ultraestrutura , Mucosa/fisiologia , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/fisiologia , Neoplasias Cutâneas/metabolismo , Fenômenos Fisiológicos da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA