Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 303(8): 563-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23981476

RESUMO

Vibrio parahaemolyticus is a seafood-borne pathogen which causes acute inflammatory gastroenteritis--a process which is mediated by the translocation of type three secretion system effector proteins. The molecular interactions governing colonization of the intestinal epithelium by this pathogen remain poorly understood. The mannose-sensitive haemagglutinin (MSHA) pilus was identified in this study as a significant factor in bacterial-host cell adherence and subsequent pathogenesis towards Caco-2 human intestinal epithelial cells. Deletion of essential components of the MSHA pilus resulted in a 60% decrease in adherence and a similar reduction in bacterial uptake by human intestinal cells. The diminished adherence of MSHA mutants correlated with significant decreases in V. parahaemolyticus-induced Caco-2 cell lysis, cell rounding and IL-8 secretion. Glycan array comparison between the V. parahaemolyticus wild type and MSHA deficient mutants identified lectin functionality for the MSHA pilus with specificity towards the fucosylated blood group oligosaccharide antigens Lewis A and X and blood groups A and B. The MSHA pilus also exhibited high affinity for the structurally related asialo-GM1 ganglioside, lacto-N-fucopentaose I and lacto-N-difucohexaose I. We hypothesize that these glycans act as receptors for the MSHA pilus in the gastrointestinal tract, thereby facilitating efficient colonization of the intestinal epithelium by V. parahaemolyticus.


Assuntos
Aderência Bacteriana , Sistemas de Secreção Bacterianos , Proteínas de Fímbrias/metabolismo , Hemaglutininas/metabolismo , Lectina de Ligação a Manose/metabolismo , Vibrio parahaemolyticus/fisiologia , Fatores de Virulência/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Células CACO-2 , Análise Mutacional de DNA , Células Epiteliais/microbiologia , Humanos , Polissacarídeos/metabolismo , Ligação Proteica , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidade
2.
BMC Genomics ; 11: 211, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20350334

RESUMO

BACKGROUND: The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult) and in the parr-smolt transformation. RESULTS: Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1), which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein) beta polypeptide 2-like 1 (GNB2L1) were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For anti-Mullerian hormone and guanine nucleotide binding protein beta polypeptide 2-like 1 expression changes in precocious males mirrored mature adults (November) but for collagen 1A and beta-globin the pattern was more complex. CONCLUSIONS: Expression changes in the fish brain during the process of precocious sexual maturation were small compared to those in the testes. Microarray analysis suggested down-regulation of housekeeping functions and up-regulation of a small number of specific processes. Transcriptional changes in the testes were much more pronounced with anti-Mullerian hormone playing a major role. Expression profiles for mature parr and maturing adult testes indicate subtle differences in gene expression between these two related groups.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Salmo salar/genética , Maturidade Sexual , Testículo/metabolismo , Animais , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Salmo salar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA