Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12365-12374, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656163

RESUMO

Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.


Assuntos
Cisteína , Ouro , Cisteína/química , Ouro/química , Peptídeos/química , Compostos Organoáuricos/química , Compostos Organoáuricos/síntese química , Estrutura Molecular
2.
J Am Chem Soc ; 146(8): 5375-5382, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354320

RESUMO

Octafluorocyclopentene (OFCP) has found utility as a polyelectrophile in substitution cascades that form complex macrocyclic compounds. The Harran group synthesis of macrocyclic polypeptides depends on OFCP as a linker, combining with four different nucleophilic units of a polypeptide. We report a computational investigation of the origins of OFCP reactivity and a rationale for controlled mono-, di-, tri-, and tetrasubstitution of fluoride ions by heteroatomic nucleophiles. The roles of inductive, negative hyperconjugative, and resonance electron-donation by fluoride substituents are explored for the reaction of OFCP, less-fluorinated analogues, and common electrophilic alkenes with several different nucleophiles.

3.
J Am Chem Soc ; 146(5): 2959-2966, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270588

RESUMO

The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.


Assuntos
Diazometano , Heme , Metano/análogos & derivados , Heme/química , Modelos Moleculares , Ferro , Ciclopropanos/química , Catálise
4.
Science ; 383(6683): 622-629, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271490

RESUMO

Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.


Assuntos
Alcaloides , Sistema Enzimático do Citocromo P-450 , Engenharia Metabólica , Paclitaxel , Proteínas de Plantas , Taxoides , Taxus , Alcaloides/biossíntese , Alcaloides/genética , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Paclitaxel/biossíntese , Taxoides/metabolismo , Taxus/enzimologia , Taxus/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
5.
J Am Chem Soc ; 145(27): 14865-14873, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377433

RESUMO

The amidated peptides are an important class of biologically active compounds due to their unique biological properties and wide applications as potential peptide drugs and biomarkers. Despite the abundance of free amide motifs (Asn, Gln, and C-terminal amide) in native peptides, late-stage modification of the amide unit in naturally occurring peptides remains very rare because of the intrinsically weak nucleophilicity of amides and the interference of multiple competing nucleophilic residues, which generally lead to undesired side reactions. Herein, chemoselective arylation of amides in unprotected polypeptides has been developed under an air atmosphere to afford the N-aryl amide peptides bearing various functional motifs. Its success relies on the combination of gold catalysis and silver salt to differentiate the relative inert amide among a collection of reactive nucleophilic amino acid residues (e.g., -NH2, -OH, and -COOH), favoring the C-N bond coupling toward amides over other more nucleophilic groups. Experimental and DFT studies reveal a crucial role of the silver cation, which serves as a transient coordination mask of the more reactive reaction sites, overcoming the inherently low reactivity of amides. The excellent biocompatibility of this strategy has been applied to functionalize a wide range of peptide drugs and complex peptides. The application could be further extended to peptide labeling and peptide stapling.


Assuntos
Peptídeos , Prata , Peptídeos/química , Amidas/química , Aminoácidos/química , Catálise
6.
J Am Chem Soc ; 145(26): 14446-14455, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329571

RESUMO

Quasi-classical molecular dynamics (MD) simulations were carried out to study the mechanism of iron porphyrin-catalyzed hydroxylation of ethylbenzene. The hydrogen atom abstraction from ethylbenzene by iron-oxo species is the rate-determining step, which generates the radical pair of iron-hydroxo species and the benzylic radical. In the subsequent radical rebound step, the iron-hydroxo species and benzylic radical recombine to form the hydroxylated product, which is barrierless on the doublet energy surface. In the gas-phase quasi-classical MD study on the doublet energy surface, 45% of the reactive trajectories lead directly to the hydroxylated product, and this increases to 56% in implicit solvent model simulations. The percentage of reactive trajectories leading to the separated radical pair is 98-100% on high-spin (quartet/sextet) energy surfaces. The low-spin state reactivity dominates in the hydroxylation of ethylbenzene, which is dynamically both concerted and stepwise, since the time gap between C-H bond cleavage and C-O bond formation ranges from 41 to 619 fs. By contrast, the high-spin state catalysis is an energetically stepwise process, which has a negligible contribution to the formation of hydroxylation products.

7.
Nat Commun ; 13(1): 6424, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307433

RESUMO

Catalyzed oxidative C-C bond coupling reactions play an important role in the chemical synthesis of complex natural products of medicinal importance. However, the poor functional group tolerance renders them unfit for the synthesis of naturally occurring polyphenolic flavones. We find that molecular oxygen in alkaline water acts as a hydrogen atom acceptor and oxidant in catalyst-free (without added catalyst) oxidative coupling of luteolin and other flavones. By this facile method, we achieve the synthesis of a small collection of flavone dimers and trimers including naturally occurring dicranolomin, philonotisflavone, dehydrohegoflavone, distichumtriluteolin, and cyclodistichumtriluteolin. Mechanistic studies using both experimental and computational chemistry uncover the underlying reasons for optimal pH, oxygen availability, and counter-cations that define the success of the reaction. We expect our reaction opens up a green and sustainable way to synthesize flavonoid dimers and oligomers using the readily available monomeric flavonoids isolated from biomass and exploiting their use for health care products and treatment of diseases.


Assuntos
Flavonas , Oxigênio , Oxigênio/química , Acoplamento Oxidativo , Catálise , Água
8.
Angew Chem Int Ed Engl ; 61(36): e202207536, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35818326

RESUMO

Herein, we leverage the Ni-catalyzed enantioselective reductive dicarbofunctionalization of internal alkenes with alkyl iodides to enable the synthesis of chiral pyrrolidinones bearing vicinal stereogenic centers. The application of newly developed 1-Nap Quinim is critical for formation of two contiguous stereocenters in high yield, enantioselectivity, and diastereoselectivity. This catalytic system also improves both the yield and enantioselectivity in the synthesis of α,α-dialkylated γ-lactams. Computational studies reveal that the enantiodetermining step proceeds with a carbamoyl-NiI intermediate that is reduced by the Mn reductant prior to intramolecular migratory insertion. The presence of the t-butyl group of the Quinim ligand leads to an unfavorable distortion of the substrate in the TS that leads to the minor enantiomer. Calculations also support an improvement in enantioselectivity with 1-Nap Quinim compared to p-tol Quinim.


Assuntos
Alcenos , Níquel , Alcenos/química , Catálise , Estrutura Molecular , Níquel/química , Carbamilação de Proteínas , Estereoisomerismo
9.
Chem Sci ; 13(19): 5767-5773, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694360

RESUMO

Despite the enormous developments in asymmetric catalysis, the basis for asymmetric induction is largely limited to the spatial interaction between the substrate and catalyst. Consequently, asymmetric discrimination between two sterically similar groups remains a challenge. This is particularly formidable for enantiodifferentiation between two aryl groups without a directing group or electronic manipulation. Here we address this challenge by using a robust organocatalytic system leading to excellent enantioselection between aryl and heteroaryl groups. With versatile 2-indole imine methide as the platform, an excellent combination of a superb chiral phosphoric acid and the optimal hydride source provided efficient access to a range of highly enantioenriched indole-containing triarylmethanes. Control experiments and kinetic studies provided important insights into the mechanism. DFT calculations also indicated that while hydrogen bonding is important for activation, the key interaction for discrimination of the two aryl groups is mainly π-π stacking. Preliminary biological studies also demonstrated the great potential of these triarylmethanes for anticancer and antiviral drug development.

10.
J Am Chem Soc ; 144(9): 4214-4223, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35224969

RESUMO

Via the design of a new, soluble poly(S-alkyl-l-cysteine) precursor, a route was developed for the successful preparation of long-chain poly(dehydroalanine), ADH, as well as the incorporation of dehydroalanine residues and ADH segments into copolypeptides. Based on experimental and computational data, ADH was found to adopt a previously unobserved "hybrid coil" structure, which combines the elements of 25-helical and 310-helical conformations. Analysis of the spectroscopic properties of ADH revealed that it possesses a strong inherent blue fluorescence, which may be amenable for use in imaging applications. ADH also contains reactive electrophilic groups that allowed its efficient modification to functionalized polypeptides after reactions under mild conditions with thiol and amine nucleophiles. The combined structural, spectroscopic, and reactivity properties of ADH make it a unique reactive and fluorescent polypeptide component for utilization in self-assembled biomaterials.


Assuntos
Alanina , Peptídeos , Alanina/análogos & derivados , Alanina/química , Cisteína/química , Peptídeos/química , Compostos de Sulfidrila
11.
J Am Chem Soc ; 144(6): 2535-2545, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35108000

RESUMO

We report the measurement and analysis of sulfonium-π, thioether-π, and ammonium-π interactions in a ß-hairpin peptide model system, coupled with computational investigation and PDB analysis. These studies indicated that the sulfonium-π interaction is the strongest and that polarizability contributes to the stronger interaction with sulfonium relative to ammonium. Computational studies demonstrate that differences in solvation of the trimethylsulfonium versus the trimethylammonium group also contribute to the stronger sulfonium-π interaction. In comparing sulfonium-π versus sulfur-π interactions in proteins, analysis of SAM- and SAH-bound enzymes in the PDB suggests that aromatic residues are enriched in close proximity to the sulfur of both SAM and SAH, but the populations of aromatic interactions of the two cofactors are not significantly different, with the exception of the Me-π interactions in SAM, which are the most prevalent interaction in SAM but are not possible for SAH. This suggests that the weaker interaction energies due to loss of the cation-π interaction in going from SAM to SAH may contribute to turnover of the cofactor.


Assuntos
Compostos de Amônio/metabolismo , Peptídeos/metabolismo , Compostos de Sulfônio/metabolismo , Compostos de Amônio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metilaminas/química , Metilaminas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Estrutura Molecular , Peptídeos/química , Ligação Proteica , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Eletricidade Estática , Compostos de Sulfônio/química , Termodinâmica , Thermus thermophilus/enzimologia
12.
J Am Chem Soc ; 143(43): 18196-18203, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34669392

RESUMO

We report the development of new side-chain amino acid-functionalized α-helical homopolypeptides that reversibly form coacervate phases in aqueous media. The designed multifunctional nature of the side-chains was found to provide a means to actively control coacervation via mild, biomimetic redox chemistry as well as allow response to physiologically relevant environmental changes in pH, temperature, and counterions. These homopolypeptides were found to possess properties that mimic many of those observed in natural coacervate forming intrinsically disordered proteins. Despite ordered α-helical conformations that are thought to disfavor coacervation, molecular dynamics simulations of a polypeptide model revealed a high degree of side-chain conformational disorder and hydration around the ordered backbone, which may explain the ability of these polypeptides to form coacervates. Overall, the modular design, uniform nature, and ordered chain conformations of these polypeptides were found to provide a well-defined platform for deconvolution of molecular elements that influence biopolymer coacervation and tuning of coacervate properties for downstream applications.


Assuntos
Aminoácidos/química , Peptídeos/química , Suspensões/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Transição de Fase , Conformação Proteica em alfa-Hélice , Temperatura de Transição
13.
Sci Rep ; 11(1): 15887, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354111

RESUMO

The androgen receptor (AR) is critical in the progression of prostate cancer (PCa). Small molecule antagonists that bind to the ligand binding domain (LBD) of the AR have been successful in treating PCa. However, the structural basis by which the AR antagonists manifest their therapeutic efficacy remains unclear, due to the lack of detailed structural information of the AR bound to the antagonists. We have performed accelerated molecular dynamics (aMD) simulations of LBDs bound to a set of ligands including a natural substrate (dihydrotestosterone), an agonist (RU59063) and three antagonists (bicalutamide, enzalutamide and apalutamide) as well as in the absence of ligand (apo). We show that the binding of AR antagonists at the substrate binding pocket alter the dynamic fluctuations of H12, thereby disrupting the structural integrity of the agonistic conformation of AR. Two antagonists, enzalutamide and apalutamide, induce considerable structural changes to the agonist conformation of LBD, when bound close to H12 of AR LBD. When the antagonists bind to the pocket with different orientations having close contact with H11, no significant conformational changes were observed, suggesting the AR remains in the functionally activated (agonistic) state. The simulations on a drug resistance mutant F876L bound to enzalutamide demonstrated that the mutation stabilizes the agonistic conformation of AR LBD, which compromises the efficacy of the antagonists. Principal component analysis (PCA) of the structural fluctuations shows that the binding of enzalutamide and apalutamide induce conformational fluctuations in the AR, which are markedly different from those caused by the agonist as well as another antagonist, bicalutamide. These fluctuations could only be observed with the use of aMD.


Assuntos
Antagonistas de Receptores de Andrógenos/química , Androgênios/química , Receptores Androgênicos/ultraestrutura , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/metabolismo , Anilidas/farmacologia , Benzamidas/farmacologia , Sítios de Ligação , Di-Hidrotestosterona/farmacologia , Humanos , Imidazóis/farmacologia , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Análise de Componente Principal , Ligação Proteica , Conformação Proteica , Receptores Androgênicos/metabolismo , Receptores Androgênicos/fisiologia , Tioidantoínas/farmacologia , Compostos de Tosil/farmacologia
14.
J Am Chem Soc ; 143(31): 11919-11926, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323481

RESUMO

Here we report a nonenzymatic glycosylation reaction that builds axial S-glycosidic bonds under biorelevant conditions. This strategy is enabled by the design and use of allyl glycosyl sulfones as precursors to glycosyl radicals and exploits the exceptional functional group tolerance of radical processes. Our method introduces a variety of unprotected glycosyl units to the cysteine residues of peptides in a highly selective fashion. Through developing the second-generation protocol, we applied our method in the direct glycosylation of complex polypeptides and proteins. Computational studies were performed to elucidate the reaction mechanism.


Assuntos
Peptídeos/síntese química , Proteínas/síntese química , Glicosilação , Estrutura Molecular , Peptídeos/química , Proteínas/química , Estereoisomerismo
15.
J Am Chem Soc ; 143(15): 6006-6017, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825475

RESUMO

The sesquiterpene-tropolones belong to a distinctive structural class of meroterpene natural products with impressive biological activities, including anticancer, antifungal, antimalarial, and antibacterial. In this article, we describe a concise, modular, and cycloaddition-based approach to a series of sesquiterpene mono- and bistropolones, including (-)-epolone B, (+)-isoepolone B, (±)-dehydroxypycnidione, and (-)-10-epi-pycnidione. Alongside the development of a general strategy to access this unique family of metabolites were computational modeling studies that justified the diastereoselectivity observed during key cycloadditions. Ultimately, these studies prompted stereochemical reassignments of the pycnidione subclass and shed additional light on the biosynthesis of these remarkable natural products.


Assuntos
Sesquiterpenos/química , Tropolona/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Reação de Cicloadição , Teoria da Densidade Funcional , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Conformação Molecular , Sesquiterpenos Monocíclicos/síntese química , Sesquiterpenos Monocíclicos/química , Sesquiterpenos/síntese química , Estereoisomerismo , Tropolona/análogos & derivados , Tropolona/síntese química
16.
J Nat Prod ; 83(12): 3758-3763, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170001

RESUMO

A chemical modification study was conducted on the marine natural product aaptamine (1), isolated from the marine sponge Aaptos aaptos. Thirty new derivatives substituted by various aromatic rings at the 3- and 7-positions of aaptamine were prepared by bromination, followed by the Suzuki coupling reaction. Sixteen compounds displayed cytotoxicities to four cancer cell lines (IC50 < 10 µM). In particular, compound 5i demonstrated a significant antiproliferative effect on the extranodal natural killer/T-cell lymphoma (ENKT) cell line SNK-6 with an IC50 value of 0.6 µM. Additionally, compound 5i showed cytotoxicities to multiple lymphoma cell lines, including Ramos, Raji, WSU-DLCL2, and SU-DHL-4 cells.


Assuntos
Antineoplásicos/uso terapêutico , Células Matadoras Naturais/imunologia , Linfoma de Células T/tratamento farmacológico , Naftiridinas/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Linfoma de Células T/imunologia , Linfoma de Células T/patologia , Naftiridinas/química
17.
Nature ; 586(7828): 242-247, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846425

RESUMO

Strained cyclic organic molecules, such as arynes, cyclic alkynes and cyclic allenes, have intrigued chemists for more than a century with their unusual structures and high chemical reactivity1. The considerable ring strain (30-50 kilocalories per mole)2,3 that characterizes these transient intermediates imparts high reactivity in many reactions, including cycloadditions and nucleophilic trappings, often generating structurally complex products4. Although strategies to control absolute stereochemistry in these reactions have been reported using stoichiometric chiral reagents5,6, catalytic asymmetric variants to generate enantioenriched products have remained difficult to achieve. Here we report the interception of racemic cyclic allene intermediates in a catalytic asymmetric reaction and provide evidence for two distinct mechanisms that control absolute stereochemistry in such transformations: kinetic differentiation of allene enantiomers and desymmetrization of intermediate π-allylnickel complexes. Computational studies implicate a catalytic mechanism involving initial kinetic differentiation of the cyclic allene enantiomers through stereoselective olefin insertion, loss of the resultant stereochemical information, and subsequent introduction of absolute stereochemistry through desymmetrization of an intermediate π-allylnickel complex. These results reveal reactivity that is available to cyclic allenes beyond the traditional cycloadditions and nucleophilic trappings previously reported, thus expanding the types of product accessible from this class of intermediates. Additionally, our computational studies suggest two potential strategies for stereocontrol in reactions of cyclic allenes. Combined, these results lay the foundation for the development of catalytic asymmetric reactions involving these classically avoided strained intermediates.


Assuntos
Alcadienos/química , Catálise , Níquel/química , Ciclização
18.
J Nat Prod ; 83(7): 2129-2144, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32633512

RESUMO

A phytochemical investigation of the MeOH extract of the leaves and twigs of Amentotaxus argotaenia, a relict vulnerable coniferous species endemic to China, led to the isolation and characterization of 35 diterpenoids/norditerpenoids. Twenty of these are new, including 11 ent-kaurane-type (amentotaxins C-M, 1-11, respectively), three icetexane-type [= 9(10→20)abeo-abietane-type (amentotaxins N-P, 12-14, respectively)], four ent-labdane-type (amentotaxins Q-T, 15-18, respectively), and two isopimarane-type [amentotaxins U (19) and V (20)] compounds. Their structures were elucidated on the basis of spectroscopic data, single-crystal X-ray diffraction, the modified Mosher's method, and electronic circular dichroism data analyses. Compounds 1-9 are rare 18-nor-ent-kaurane-type diterpenoids featuring a 4ß,19-epoxy ring. All the isolates were evaluated for their cytotoxic effects against a small panel of cultured human cancer cell lines (HeLa, A-549, MDA-MB-231, SKOV3, Huh-7, and HCT-116), and some of them exhibited cytotoxicities with IC50 values ranging from 1.5 to 10.0 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Folhas de Planta/química , Taxaceae/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Análise Espectral/métodos
19.
J Am Chem Soc ; 142(22): 9982-9992, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32352771

RESUMO

The efficient and stereoselective synthesis of polysubstituted butadienes, especially the multifunctional butadienes, represents a great challenge in organic synthesis. Herein, we wish to report a distinctive Pd(0) carbene-initiated decarboxylative olefination approach that enables the direct coupling of diazo esters with vinylethylene carbonates (VECs), vinyl oxazolidinones, or vinyl benzoxazinones to afford alcohol-, amine-, or aniline-containing 1,3-dienes in moderate to high yields and with excellent stereoselectivity. This protocol features operational simplicity, mild reaction conditions, a broad substrate scope, and gram-scalability. Notably, a structurally unique allylic Pd(II) intermediate was isolated and characterized. DFT calculation and control experiments demonstrated that a rare Pd(0) carbene intermediate could be involved in this reaction. Moreover, the polysubstituted butadienes as novel building blocks were unprecedentedly assembled into macrocycles, which efficiently inhibited the P-glycoprotein and dramatically reversed multidrug resistance in cancer cells by 190-fold.


Assuntos
Butadienos/síntese química , Compostos Macrocíclicos/síntese química , Paládio/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Butadienos/química , Butadienos/farmacologia , Catálise , Sobrevivência Celular/efeitos dos fármacos , Descarboxilação , Teoria da Densidade Funcional , Humanos , Células KB , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Estrutura Molecular , Estereoisomerismo
20.
J Org Chem ; 85(5): 3858-3864, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32031811

RESUMO

Tetrafluoroethylene and butadiene form the 2 + 2 cycloadduct under kinetic control, but the Diels-Alder cycloadduct is formed under thermodynamic control. Borden and Getty showed that the preference for 2 + 2 cycloaddition is due to the necessity for syn-pyramidalization of the two CF2 groups in the 4 + 2 transition state. We have explored the full potential energy surface for the concerted and stepwise reactions of tetrafluoroethylene and butadiene with density functional theory, DFT (B3LYP and M06-2X), DLPNO-UCCSD(T), and CASSCF-NEVPT2 methods and with the distortion/interaction-activation strain model to explain the energetics of different pathways. The 2 + 2 cycloadduct is formed by an anti-transition state followed by two rotations and a final bond formation transition state. Energetics are compared to the reaction of maleic anhydride and ethylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA