Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Periodontol 2000 ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273461

RESUMO

Oral squamous cell carcinoma (OSCC) arises in the oral epithelium, a tissue in which immune surveillance is mediated by its primary resident leukocytes, Langerhans cells (LCs), and γδT cells. Under steady-state conditions, LCs and γδT cells play a critical role in maintaining oral mucosal homeostasis. As antigen-presenting cells of stratified epithelia, LCs respond to various challenges faced by the epithelium, orchestrating innate, and adaptive immune responses in order to resolve them. γδT cells also sense diverse epithelial insults and react rapidly through cytokine production and cytolytic activity. These epithelial sentinels are also considered to be the first leukocytes in the oral epithelium to encounter early carcinogenic events that have the potential of becoming OSCC. As evident in many malignancies, leukocyte populations help prevent cancer development although they also promote tumor progression. OSCC is no exception, as studies have reported both anti- and pro-tumor roles of LCs and γδT cells. In this review, we summarize the ontogeny of LCs and γδT cells in the oral epithelium and discuss their role in OSCC.

2.
Eur J Immunol ; 53(11): e2249819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36512638

RESUMO

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.


Assuntos
Células Dendríticas , Pele , Animais , Humanos , Citometria de Fluxo , Células Mieloides , Rim , Mamíferos
3.
Elife ; 112022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749158

RESUMO

The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.


Assuntos
Papilas Gustativas , Língua , Animais , Macrófagos , Camundongos , Paladar/fisiologia , Língua/inervação
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012988

RESUMO

Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αßT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.


Assuntos
Antineoplásicos/metabolismo , Carcinógenos/toxicidade , Células de Langerhans/metabolismo , 4-Nitroquinolina-1-Óxido/toxicidade , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Histonas/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Células de Langerhans/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Fagócitos/patologia , Quinolonas/toxicidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Língua/patologia , Transcriptoma/genética
5.
Cell Rep ; 27(12): 3657-3671.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216482

RESUMO

IL-17-producing γδ T cells express oligoclonal Vγ4+ and Vγ6+ TCRs, mainly develop in the prenatal thymus, and later persist as long-lived self-renewing cells in all kinds of tissues. However, their exchange between tissues and the mechanisms of their tissue-specific adaptation remain poorly understood. Here, single-cell RNA-seq profiling identifies IL-17-producing Vγ6+ T cells as a highly homogeneous Scart1+ population in contrast to their Scart2+ IL-17-producing Vγ4+ T cell counterparts. Parabiosis demonstrates that Vγ6+ T cells are fairly tissue resident in the thymus, peripheral lymph nodes, and skin. There, Scart1+ Vγ6+ T cells display tissue-specific gene expression signatures in the skin, characterized by steady-state production of the cytokines IL-17A and amphiregulin as well as by high expression of the anti-apoptotic Bcl2a1 protein family. Together, this study demonstrates how Scart1+ Vγ6+ T cells undergo tissue-specific functional adaptation to persist as effector cells in their skin habitat.


Assuntos
Antígenos de Histocompatibilidade Menor/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Superfície Celular/metabolismo , Análise de Célula Única/métodos , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma , Animais , Sobrevivência Celular , Células Cultivadas , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Pele/metabolismo , Pele/patologia
6.
Trends Immunol ; 39(10): 788-800, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30219310

RESUMO

Langerhans cells (LCs) are classically viewed as unique antigen-presenting cells (APCs) that originate from embryonic precursors and maintain themselves independently in the epidermis. However, recent studies have demonstrated that murine LCs in mucosal epithelia arise and are continuously replenished from circulating bone marrow (BM) precursors. This has led to the emergence of a novel perspective proposing that LCs can evolve from various origins. Because both embryonic and BM precursors differentiate into LCs only after entering the epithelium, this highlights its crucial role in nurturing LC development to perfectly comply with the physiological functions of the tissue. Thus, current evidence suggests plasticity of LC differentiation, revealing novel developmental mechanisms that are controlled by environmental cues.


Assuntos
Células da Medula Óssea/fisiologia , Células de Langerhans/imunologia , Mucosa/imunologia , Pele/citologia , Animais , Apresentação de Antígeno , Diferenciação Celular , Plasticidade Celular , Humanos , Camundongos
7.
Proc Natl Acad Sci U S A ; 115(25): E5736-E5745, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871951

RESUMO

AXL, a member of the TYRO3, AXL, and MERTK (TAM) receptor tyrosine kinase family, has been shown to play a role in the differentiation and activation of epidermal Langerhans cells (LCs). Here, we demonstrate that growth arrest-specific 6 (GAS6) protein, the predominant ligand of AXL, has no impact on LC differentiation and homeostasis. We thus examined the role of protein S (PROS1), the other TAM ligand acting primarily via TYRO3 and MERTK, in LC function. Genetic ablation of PROS1 in keratinocytes resulted in a typical postnatal differentiation of LCs; however, a significant reduction in LC frequencies was observed in adult mice due to increased apoptosis. This was attributed to altered expression of cytokines involved in LC development and tissue homeostasis within keratinocytes. PROS1 was then excised in LysM+ cells to target LCs at early embryonic developmental stages, as well as in adult monocytes that also give rise to LCs. Differentiation and homeostasis of LCs derived from embryonic precursors was not affected following Pros1 ablation. However, differentiation of LCs from bone marrow (BM) precursors in vitro was accelerated, as was their capability to reconstitute epidermal LCs in vivo. These reveal an inhibitory role for PROS1 on BM-derived LCs. Collectively, this study highlights a cell-specific regulation of LC differentiation and homeostasis by TAM signaling.


Assuntos
Proteínas de Transporte/metabolismo , Epiderme/metabolismo , Células de Langerhans/metabolismo , Proteína S/metabolismo , Animais , Medula Óssea/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , c-Mer Tirosina Quinase/metabolismo
8.
Oncoimmunology ; 6(11): e1356965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147615

RESUMO

The role of neutrophils in tumor progression has become in recent years a subject of growing interest. Tumor-associated neutrophils (TANs), which constitute an important portion of the tumor microenvironment, promote immunosuppression in advanced tumors by modulating the proliferation, activation and recruitment of a variety of immune cell types. Studies which investigated the consequences of manipulating TAN polarization suggest that the impact of these neutrophils on tumor progression is considerably mediated by and dependent on the presence of CD8 T-cells. It has been previously shown that granulocytic myeloid regulatory cells, i.e. TANs and granulocytic myeloid-derived suppressor cells (G-MDSCs) are capable of suppressing CD8 T-cell proliferation and affect their activation. In the current study, we find that in addition, TANs isolated from different models of murine cancer promote immunosuppression by strongly inducing CD8 T-cell apoptosis. We demonstrate that the TNFα pathway in TANs is critical for the induction of apoptosis, and that the mechanism through which apoptosis is induced involves the production of NO, but not ROS. In the absence of pre-activation, TANs are capable of activating CD8 T-cells, but specifically induce the apoptosis of non-activated CD8+CD69- cells. Despite this contradictive effect on T-cell function, we show in vivo that TANs suppress the anti-tumor effect of CD8 T-cells and abolish their ability to delay tumor growth. Our results add another important layer on the understanding of the possible mechanisms by which TANs regulate the anti-tumor immune response mediated by CD8 T-cells, therefore promoting a tumor-supportive environment.

10.
Proc Natl Acad Sci U S A ; 114(3): E337-E346, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049839

RESUMO

The oral epithelium contributes to innate immunity and oral mucosal homeostasis, which is critical for preventing local inflammation and the associated adverse systemic conditions. Nevertheless, the mechanisms by which the oral epithelium maintains homeostasis are poorly understood. Here, we studied the role of growth arrest specific 6 (GAS6), a ligand of the TYRO3-AXL-MERTK (TAM) receptor family, in regulating oral mucosal homeostasis. Expression of GAS6 was restricted to the outer layers of the oral epithelium. In contrast to protein S, the other TAM ligand, which was constitutively expressed postnatally, expression of GAS6 initiated only 3-4 wk after birth. Further analysis revealed that GAS6 expression was induced by the oral microbiota in a myeloid differentiation primary response gene 88 (MyD88)-dependent fashion. Mice lacking GAS6 presented higher levels of inflammatory cytokines, elevated frequencies of neutrophils, and up-regulated activity of enzymes, generating reactive nitrogen species. We also found an imbalance in Th17/Treg ratio known to control tissue homeostasis, as Gas6-deficient dendritic cells preferentially secreted IL-6 and induced Th17 cells. As a result of this immunological shift, a significant microbial dysbiosis was observed in Gas6-/- mice, because anaerobic bacteria largely expanded by using inflammatory byproducts for anaerobic respiration. Using chimeric mice, we found a critical role for GAS6 in epithelial cells in maintaining oral homeostasis, whereas its absence in hematopoietic cells synergized the level of dysbiosis. We thus propose GAS6 as a key immunological regulator of host-commensal interactions in the oral epithelium.


Assuntos
Homeostase/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Bucal/metabolismo , Animais , Disbiose/metabolismo , Células Epiteliais/metabolismo , Imunidade Inata/imunologia , Inflamação/metabolismo , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Proteína S/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo
11.
Cell Rep ; 10(4): 562-73, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25620698

RESUMO

Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-ß-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.


Assuntos
Neoplasias/patologia , Neutrófilos/citologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia
12.
Proc Natl Acad Sci U S A ; 109(18): 7043-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509018

RESUMO

Excessive bone resorption is frequently associated with chronic infections and inflammatory diseases. Whereas T cells were demonstrated to facilitate osteoclastogenesis in such diseases, the role of dendritic cells, the most potent activators of naive T cells, remains unclear. Using a model involving inflammation-driven alveolar bone loss attributable to infection, we showed that in vivo ablation of Langerhans cells (LCs) resulted in enhanced bone loss. An increased infiltration of B and T lymphocytes into the tissue surrounding the bone was observed in LC-ablated mice, including receptor activator of NF-κB ligand (RANKL)-expressing CD4(+) T cells with known capabilities of altering bone homeostasis. In addition, the absence of LCs significantly reduced the numbers of CD4(+)Foxp3(+) T-regulatory cells in the tissue. Further investigation revealed that LCs were not directly involved in presenting antigens to T cells. Nevertheless, despite their low numbers in the tissue, the absence of LCs resulted in an elevated activation of CD4(+) but not CD8(+) T cells. This activation involved elevated production of IFN-γ but not IL-17 or IL-10 cytokines. Our data, thus, reveal a protective immunoregulatory role for LCs in inflammation-induced alveolar bone resorption, by inhibiting IFN-γ secretion and excessive activation of RANKL(+)CD4(+) T cells with a capability of promoting osteoclastogenesis.


Assuntos
Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/prevenção & controle , Células de Langerhans/imunologia , Perda do Osso Alveolar/etiologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/imunologia , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Primers do DNA/genética , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Inflamação/complicações , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Células de Langerhans/classificação , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Porphyromonas gingivalis/imunologia , Ligante RANK/metabolismo , Linfócitos T Reguladores/imunologia
13.
Expert Rev Vaccines ; 10(8): 1169-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21854310

RESUMO

Plasmid DNA is a promising vaccine modality that is regularly examined in prime-boost immunization regimens. Recent advances in skin immunity increased our understanding of the sophisticated cutaneous immune network, which revived scientific interest in delivering vaccines to the skin. Intradermal administration of plasmid DNA via needle injection is a simple and inexpensive procedure that exposes the plasmid and its encoded antigen to the dermal immune surveillance system. This triggers unique mechanisms for eliciting local and systemic immunity that can confer protection against pathogens and tumors. Understanding the mechanisms of intradermal plasmid DNA immunization is essential for enhancing and modulating its immunogenicity. With regard to vaccination, this is of greater importance as this routine injection technique is highly desirable for worldwide immunization. This article will focus on the current understanding of the mechanisms involved in antigen expression and presentation during primary and secondary syringe and needle intradermal plasmid DNA immunization.


Assuntos
Injeções Intradérmicas/métodos , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Animais , Apresentação de Antígeno/imunologia , Humanos , Pele/imunologia , Vacinação/métodos
14.
PLoS One ; 6(4): e18465, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21483689

RESUMO

BACKGROUND: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. METHODS: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. RESULTS/CONCLUSIONS: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.


Assuntos
Linfonodos/citologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Especificidade de Anticorpos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Morte Celular/imunologia , Quimiotaxia/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene gag/metabolismo , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Linfonodos/imunologia , Linfonodos/metabolismo , Macaca mulatta , Mucosa/virologia , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Reguladores/citologia , Fatores de Tempo
15.
J Immunol ; 186(2): 891-900, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21160044

RESUMO

Although oral dendritic cells (DCs) were shown to induce cell-mediated immunity, the identity and function of the various oral DC subsets involved in this process is unclear. In this study, we examined the mechanisms used by DCs of the buccal mucosa and of the lining mucosa to elicit immunity. After plasmid DNA immunization, buccally immunized mice generated robust local and systemic CD8(+) T cell responses, whereas lower responses were seen by lining immunization. A delayed Ag presentation was monitored in vivo in both groups; yet, a more efficient presentation was mediated by buccal-derived DCs. Restricting transgene expression to CD11c(+) cells resulted in diminished CD8(+) T cell responses in both oral tissues, suggesting that immune induction is mediated mainly by cross-presentation. We then identified, in addition to the previously characterized Langerhans cells (LCs) and interstitial dendritic cells (iDCs), a third DC subset expressing the CD103(+) molecule, which represents an uncharacterized subset of oral iDCs expressing the langerin receptor (Ln(+)iDCs). Using Langerin-DTR mice, we demonstrated that whereas LCs and Ln(+)iDCs were dispensable for T cell induction in lining-immunized mice, LCs were essential for optimal CD8(+) T cell priming in the buccal mucosa. Buccal LCs, however, failed to directly present Ag to CD8(+) T cells, an activity that was mediated by buccal iDCs and Ln(+)iDCs. Taken together, our findings suggest that the mechanisms engaged by oral DCs to prime T cells vary between oral mucosal tissues, thus emphasizing the complexity of the oral immune network. Furthermore, we found a novel regulatory role for buccal LCs in potentiating CD8(+) T cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos de Superfície/administração & dosagem , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Citotoxicidade Imunológica/genética , Células Dendríticas/metabolismo , Toxina Diftérica/administração & dosagem , Toxina Diftérica/genética , Toxina Diftérica/imunologia , Técnicas de Introdução de Genes , Gengiva/citologia , Gengiva/imunologia , Gengiva/microbiologia , Humanos , Células de Langerhans/citologia , Células de Langerhans/imunologia , Células de Langerhans/microbiologia , Lectinas Tipo C/administração & dosagem , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Ativação Linfocitária/genética , Lectinas de Ligação a Manose/administração & dosagem , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa Bucal/metabolismo , Ovalbumina/administração & dosagem , Ovalbumina/genética , Ovalbumina/imunologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
16.
J Immunol ; 185(6): 3463-71, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20713888

RESUMO

Dendritic cells (DCs) play a critical role in CD8(+) T cell priming following DNA vaccination. In contrast to other DNA injection routes or immunization with viral vectors, Ag presentation is delayed following needle injection of plasmid DNA into the skin. The contribution of various skin DC subsets to this process is not known. In this study, we show that dermal CD11c(+) cells are the most important transgene-expressing cells following immunization. Using langerin- diphtheria toxin receptor mice we demonstrated that langerin(+) dermal DCs (Ln(+) dDCs) were crucial for generating an optimal CD8(+) T cell response. Blocking migration of skin cells to the lymph node (LN) ablated immunogenicity, suggesting that migration of dDC subsets to the LN is essential for generating immunity. This migration generated a weak Ag-presenting activity in vivo until day 5 postimmunization, which then increased dramatically. We further found that Ln(+) dDCs and dDCs were the only DC populations directly presenting Ag to CD8(+) T cells ex vivo during the initial 8-d period postimmunization. This activity changed on the following days, when both skin DCs and LN-resident DCs were able to present Ag to CD8(+) T cells. Taken together, our in vivo and ex vivo results suggest that activation of CD8(+) T cells following intradermal plasmid DNA immunization depends on directly transfected Ln(+)dDCs and dDCs. Moreover, the type of DCs presenting Ag changed over time, with Ln(+)dDCs playing the major role in potentiating the initial CD8(+) T cell response.


Assuntos
Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Linfócitos T CD8-Positivos/imunologia , DNA Viral/imunologia , Células Dendríticas/imunologia , Técnicas de Introdução de Genes , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Pele/imunologia , Transfecção/métodos , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Biolística , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , DNA Viral/administração & dosagem , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Injeções Intradérmicas , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Pele/citologia , Pele/metabolismo
17.
J Clin Invest ; 120(1): 379-89, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20038801

RESUMO

Directed gene transfer into specific cell lineages in vivo is an attractive approach for both modulating gene expression and correcting inherited mutations such as emphysema caused by human alpha1 antitrypsin (hAAT) deficiency. However, somatic tissues are mainly comprised of heterogeneous, differentiated cell lineages that can be short lived and difficult to specifically transfect. Here, we describe an intratracheally instilled lentiviral system able to deliver genes selectively to as many as 70% of alveolar macrophages (AMs) in the mouse lung. Following a single in vivo lentiviral transduction, genetically tagged AMs persisted in lung alveoli and expressed transferred genes for the lifetime of the adult mouse. A prolonged macrophage lifespan, rather than precursor cell proliferation, accounted for the surprisingly sustained presence of transduced AMs. We utilized this long-lived population to achieve localized secretion of therapeutic levels of hAAT protein in lung epithelial lining fluid. In an established mouse model of emphysema, lentivirally delivered hAAT ameliorated the progression of emphysema, as evidenced by attenuation of increased lung compliance and alveolar size. After 24 weeks of sustained gene expression, no humoral or cellular immune responses to hAAT protein were detected. Our results challenge the dogma that AMs are short lived and suggest that these differentiated cells may be a possible target cell population for in vivo gene therapy applications, including the sustained correction of hAAT deficiency.


Assuntos
Enfisema/terapia , Terapia Genética , Lentivirus/genética , Macrófagos Alveolares/metabolismo , alfa 1-Antitripsina/genética , Animais , Humanos , Inflamação/etiologia , Antígenos Comuns de Leucócito/análise , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Proteínas do Envelope Viral/genética
18.
Blood ; 112(12): 4585-90, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18784371

RESUMO

There is evidence that the limited immunogenicity of plasmid DNA vaccines is the result, at least in part, of the rapid clearance of vaccine antigen expression by antigen-specific immune responses. However, the cell types responsible for the clearance of plasmid DNA vaccine antigens are not known. Here we demonstrate that macrophages, NK cells, and CD8(+) T cells did not significantly contribute to the DNA antigen clearance but CD4(+) T cells played the crucial role in attenuating plasmid DNA vaccine antigen expression. Adoptive transfer experiments demonstrate that CD4(+) T cells facilitated DNA vaccine antigen clearance in a Fas/FasL-dependent manner. Furthermore, we show that depletion of CD4(+) T cells prevented the clearance of vaccine antigen and the appearance of a CD8(+) T-cell immune response. Inoculation of major histocompatibility complex class II KO mice with the plasmid DNA led to persistent antigen expression and abolition of a CD8(+) T-cell immune response. Importantly, the prolongation of antigen expression by disrupting the CD4(+) T-cell Fas/FasL myocytes signaling led to a 3- to 5-fold increase of antigen-specific CD8(+) T-cell responses. These data demonstrate a dominant role of CD4(+) T cell-mediated cytotoxicity in plasmid DNA vaccine antigen clearance.


Assuntos
Antígenos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/imunologia , Vacinas de DNA/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/metabolismo , Proteína Ligante Fas/genética , Imunidade Celular/imunologia , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmídeos/imunologia , Plasmídeos/metabolismo , Microglobulina beta-2/genética , Receptor fas/genética
19.
Am J Respir Cell Mol Biol ; 39(2): 133-41, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18323534

RESUMO

Inherited mutations in the human alpha(1)-antitrypsin (AAT) gene lead to deficient circulating levels of AAT protein and a predisposition to developing emphysema. Gene therapy for individuals deficient in AAT is an attractive goal, because transfer of a normal AAT gene into any cell type able to secrete AAT should reverse deficient AAT levels and attenuate progression of lung disease. Here we present an approach for AAT gene transfer based on the transplantation of lentivirally transduced hematopoietic stem cells (HSCs). We develop a novel dual-promoter lentiviral system to transfer normal human AAT cDNA as well as a fluorescent tracking "reporter gene" into murine HSCs. After transplantation of 3,000 transduced HSCs into irradiated mouse recipients, we demonstrate simultaneous and sustained systemic expression of both genes in vivo for at least 31 weeks. The stem cells transduced with this protocol maintain multipotency, self-renewal potential, and the ability to reconstitute the hematopoietic systems of both primary and secondary recipients. This lentiviral-based system may be useful for investigations requiring the systemic secretion of anti-proteases or cytokines relevant to the pathogenesis of a variety of lung diseases.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , alfa 1-Antitripsina/biossíntese , Animais , Linhagem Celular , Genes Reporter , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Humanos , Lentivirus/genética , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mutação , Transdução Genética , alfa 1-Antitripsina/genética
20.
J Virol ; 81(23): 12793-802, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881444

RESUMO

While recent studies have demonstrated that secondary CD8+ T cells develop into effector-memory cells, the impact of particular vaccine regimens on the elicitation of these cells remains poorly defined. In the present study we evaluated the effect of three different immunogens--recombinant vaccinia, recombinant adenovirus, and plasmid DNA--on the generation of memory cellular immune responses. We found that vectors that induce the rapid movement of CD8+ T cells into the memory compartment during a primary immune response also drive a rapid differentiation of these cells into effector-memory CD8+ T cells following a secondary immunization. In contrast, the functional profiles of both CD8+ and CD4+ T cells, assessed by measuring antigen-stimulated gamma interferon and interleukin-2 production, were not predominantly shaped by the boosting immunogen. We also demonstrated that the in vivo expression of antigen by recombinant vectors was brief following boosting immunization, suggesting that antigen persistence has a minimal impact on the differentiation of secondary CD8+ T cells. When used in heterologous or in homologous prime-boost combinations, these three vectors generated antigen-specific CD8+ T cells with different phenotypic profiles. Expression of the memory-associated molecule CD27 on effector CD8+ T cells decreased following heterologous but not homologous boosting, resulting in a phenotypic profile similar to that seen on primary CD8+ T cells. These data therefore suggest that the phenotype of secondary CD8+ T cells is determined predominantly by the boosting immunogen whereas the cytokine profile of these cells is shaped by both the priming and boosting immunogens.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunização Secundária , Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Interferon gama/biossíntese , Interleucina-2/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA