Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Nanomedicine ; 19: 3623-3639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660023

RESUMO

Introduction: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods: Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results: Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion: EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doxorrubicina , Receptores ErbB , Neoplasias Pulmonares , Animais , Feminino , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Control Release ; 367: 806-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341177

RESUMO

High-risk neuroblastoma has poor survival due to treatment failure and off-target side effects of therapy. Small molecule inhibitors have shown therapeutic efficacy at targeting oncogenic cell cycle dysregulators, such as polo-like kinase 1 (PLK1). However, their clinical success is limited by a lack of efficacy and specificity, causing off-target toxicity. Herein, we investigate a new treatment strategy whereby a bispecific antibody (BsAb) with dual recognition of methoxy polyethylene glycol (PEG) and a neuroblastoma cell-surface receptor, epidermal growth factor receptor (EGFR), is combined with a PEGylated small interfering RNA (siRNA) lipid nanoparticle, forming BsAb-nanoparticle RNA-interference complexes for targeted PLK1 inhibition against high-risk neuroblastoma. Therapeutic efficacy of this strategy was explored in neuroblastoma cell lines and a tumor xenograft model. Using ionizable lipid-based nanoparticles as a low-toxicity and clinically safe approach for siRNA delivery, we identified that their complexing with EGFR-PEG BsAb resulted in increases in cell targeting (1.2 to >4.5-fold) and PLK1 gene silencing (>2-fold) against EGFR+ high-risk neuroblastoma cells, and enhancements correlated with EGFR expression on the cells (r > 0.94). Through formulating nanoparticles with PEG-lipids ranging in diffusivity, we further identified a highly diffusible PEG-lipid which provided the most pronounced neuroblastoma cell binding, PLK1 silencing, and significantly reduced cancer growth in vitro in high-risk neuroblastoma cell cultures and in vivo in a tumor-xenograft mouse model of the disease. Together, this work provides an insight on the role of PEG-lipid diffusivity and EGFR targeting as potentially relevant variables influencing the therapeutic efficacy of siRNA nanoparticles in high-risk neuroblastoma.


Assuntos
Nanopartículas , Neuroblastoma , Humanos , Animais , Camundongos , RNA Interferente Pequeno , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/genética , Quinase 1 Polo-Like , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Receptores ErbB/genética , Nanopartículas/química , Proliferação de Células , Lipídeos/farmacologia
3.
Sci Rep ; 13(1): 19741, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957274

RESUMO

Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/ß subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor ß1/ß2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.


Assuntos
Doenças Autoimunes , Carcinoma Pulmonar de Lewis , Animais , Humanos , Autoimunidade , Células Matadoras Naturais , Linfócitos T Reguladores , Doenças Autoimunes/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo
4.
Sci Rep ; 13(1): 11702, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474630

RESUMO

Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Raios Ultravioleta/efeitos adversos , Terapia de Imunossupressão/efeitos adversos , Dano ao DNA , Reparo do DNA , Melanoma/etiologia , Interleucina-12 , Neoplasias Cutâneas/complicações
5.
Sci Transl Med ; 15(696): eabm1262, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196067

RESUMO

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Leucemia , Humanos , Anticorpos Biespecíficos/uso terapêutico , Distribuição Tecidual , Leucócitos Mononucleares , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/uso terapêutico , Polietilenoglicóis , Lipossomos , Leucemia/tratamento farmacológico
7.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602058

RESUMO

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Assuntos
Glioblastoma , Glipicanas , Humanos , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons/métodos , Zircônio , Fragmentos de Imunoglobulinas , Linhagem Celular Tumoral
8.
Orthop J Sports Med ; 10(11): 23259671221134819, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36458106

RESUMO

Background: Interscalene nerve catheters have been proven to be effective in managing pain after rotator cuff repair (RCR) surgery. Liposomal bupivacaine is a newer approved therapy for use around the interscalene brachial plexus, but its analgesic efficacy has limited supporting data in various patient populations. Purpose/Hypothesis: The purpose of this study was to investigate the quality of recovery after arthroscopic RCR in patients who received either single-injection interscalene liposomal bupivacaine or an interscalene peripheral nerve catheter. It was hypothesized that interscalene peripheral nerve catheters would provide more reliable analgesia and improved patient satisfaction 48 hours after surgery. Study Design: Cohort study; Level of evidence, 2. Methods: Enrolled were 93 consecutive patients who underwent arthroscopic rotator cuff surgery at a single ambulatory surgery center between October 2020 and June 2021. Of these patients, 13 were lost to follow-up; thus, 80 patients were included in statistical analysis. One group of patients (n = 48) received a preoperative interscalene nerve block placed with 10 mL 0.5% bupivacaine and 10 mL 1.3% liposomal bupivacaine. The second group (n = 32) received a preoperative interscalene catheter with an initial bolus of 20 mL 0.25% bupivacaine and a 0.2% ropivacaine infusion by an elastomeric pump set at 10 mL/hr for 48 hours. The primary outcome was the difference between preoperative and 48-hour postoperative quality of recovery-15 (QoR-15) scores. Secondary outcomes included visual analog pain scores, opioid use, and patient satisfaction. Complications and adverse effects were also noted. The Kruskal-Wallis test was used to analyze means and standard deviations for continuous endpoints; Fisher exact test was used to analyze counts and proportions for categorical endpoints. Results: The liposomal bupivacaine group had a mean reduction of 3.9 in their postoperative QoR-15 scores, and the catheter group had a mean reduction of 25.1 in their postoperative QoR-15 scores, indicating a significantly worse functional recovery period compared with liposomal bupivacaine within the first 48 hours (P < .001). Patients who received liposomal bupivacaine also had significantly lower pain scores on the second postoperative day, improved quality of sleep, and improved satisfaction with analgesia (P < .05 for all). Conclusion: The use of interscalene liposomal bupivacaine demonstrated significantly improved quality of recovery when compared with interscalene nerve catheter after RCR.

9.
Pharmaceutics ; 14(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890381

RESUMO

To overcome the severe side effects of cancer chemotherapy, it is vital to develop targeting chemotherapeutic delivery systems with the potent inhibition of tumour growth, angiogenesis, invasion and migration at low drug dosages. For this purpose, we co-loaded a conventional antiworm drug, albendazole (ABZ), and a TOPK inhibitor, OTS964, into lipid-coated calcium phosphate (LCP) nanoparticles for skin cancer treatment. OTS- and ABZ-loaded LCP (OTS-ABZ-LCP) showed a synergistic cytotoxicity against skin cancer cells through their specific cancerous pathways, without obvious toxicity to healthy cell lines. Moreover, dual-targeting the programmed death ligand-1 (PD-L1) and folate receptor overexpressed on the surface of skin cancer cells completely suppressed the skin tumour growth at low doses of ABZ and OTS. In summary, ABZ and OTS co-loaded dual-targeting LCP NPs represent a promising platform with high potentials against complicated cancers where PD-L1/FA dual targeting appears as an effective approach for efficient and selective cancer therapy.

10.
Sci Rep ; 12(1): 11185, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778468

RESUMO

T cell-dendritic cell (DC) interactions contribute to reciprocal stimulation leading to DC maturation that results in production of interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Both cytokines have been implicated in autoimmune diseases while being necessary for effective immune responses against foreign antigens. We describe a lipidic peptide, designated IK14004, that modifies crosstalk between T cells and DCs resulting in suppression of IL-12p40/IFN-γ production. T cell production of interleukin-2 (IL-2) and IFN-γ is uncoupled and IL-12p70 production is enhanced. IK14004 induces expression of activating co-receptors in CD8+ T cells and increases the proportion of Foxp3-expressing CD4+ T regulatory cells. The potential for IK14004 to impact on signalling pathways required to achieve a balanced immune response upon stimulation of DCs and T cells is highlighted. This novel compound provides an opportunity to gain further insights into the complexity of T cell-DC interactions relevant to autoimmunity associated with malignancies and may have therapeutic benefit.


Assuntos
Células Dendríticas , Linfócitos T Reguladores , Citocinas/metabolismo , Interferon gama/metabolismo , Interleucina-12/metabolismo , Linfócitos T Reguladores/metabolismo
11.
Chem Commun (Camb) ; 58(56): 7777-7780, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35731091

RESUMO

Confined sono-polymerization is developed to prepare poly(ethylene glycol) nanoparticles within water-in-oil microemulsion, followed by post-functionalization with a bispecific antibody (anti HER2 and anti PEG) for targeted delivery of photosensitizers (i.e., indocyanine green). The nanoparticles could specifically target to breast cancer cells (i.e., SKBR3) that overexpress HER2 receptors for the inhibition of cancer cell growth under 808 nm laser irradiation. This study highlights a facile and controllable method to fabricate therapeutic nanoparticles capable of targeted delivery.


Assuntos
Nanopartículas , Polietilenoglicóis , Linhagem Celular Tumoral , Verde de Indocianina , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes , Polimerização
12.
Mol Pharm ; 19(5): 1233-1247, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35438509

RESUMO

Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Glioblastoma/metabolismo , Humanos , Recidiva Local de Neoplasia
13.
Biomaterials ; 283: 121416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217483

RESUMO

Personalised nanomedicine is an advancing field which has developed significant improvements for targeting therapeutics to aggressive cancer and with fewer side effects. The treatment of gliomas such as glioblastoma (or other brain tumours), with nanomedicine is complicated by a commonly poor accumulation of drugs in tumour tissue owing to the partially intact blood-brain barrier (BBB). Nonetheless, the BBB becomes compromised following surgical intervention, and gradually with disease progression. Increased vasculature permeability generated by a tumour, combined with decreased BBB integrity, offers a mechanism to enhance therapeutic outcomes. We monitored a spontaneous glioma tumour model in immunocompetent mice with ongoing T2-weighted and contrast-enhanced T1-weighted magnetic resonance imaging gradient echo and spin echo sequences to predict an optimal "leakiness" stage for nanomedicine injections. To ascertain the effectiveness of targeted nanomedicines in treating brain tumours, subsequent systemic administration of targeted hyperbranched polymers was then utislised, to deliver the therapeutic payload when both the tumour and brain vascularity had become sufficiently susceptible to allow drug accumulation. Treatment with either doxorubicin-loaded hyperbranched polymer, or the same nanomedicine targeted to an ephrin receptor (EphA2) using a bispecific antibody, resulted in uptake of chemotherapeutic doxorubicin in the tumour and in reduced tumour growth. Compared to vehicle and doxorubicin only, nanoparticle delivered doxorubicin resulted in increased tumour apoptosis, while averting cardiotoxicity. This suggests that polyethylene based (PEGylated)-nanoparticle delivered doxorubicin could provide a more efficient treatment in tumours with a disrupted BBB, and that treatment should commence immediately following detection of gadolinium permeability, with early detection and ongoing 'leakiness' monitoring in susceptible patients being a key factor.


Assuntos
Neoplasias Encefálicas , Nanomedicina , Animais , Barreira Hematoencefálica , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Humanos , Camundongos , Nanomedicina/métodos
14.
Sci Rep ; 11(1): 24088, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916549

RESUMO

Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 µm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.


Assuntos
Ameloblastoma/fisiopatologia , Ameloblastoma/terapia , Neoplasias Maxilomandibulares/fisiopatologia , Neoplasias Maxilomandibulares/terapia , Osteogênese , Células Estromais , Engenharia Tecidual/métodos , Ameloblastoma/complicações , Ameloblastoma/genética , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/terapia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Humanos , Neoplasias Maxilomandibulares/complicações , Neoplasias Maxilomandibulares/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Osteoblastos/fisiologia , Ligante RANK/genética , Ligante RANK/metabolismo , Ratos , Células Tumorais Cultivadas , Microambiente Tumoral
15.
BMC Cancer ; 20(1): 1214, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302918

RESUMO

BACKGROUND: Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy of Bispecific T cell Engager (BiTE) therapy in PCa, we sought to produce and test the efficacy of a GPC-1 targeted BiTE construct based on the Miltuximab® sequence. Miltuximab® is a clinical stage anti-GPC-1 antibody that has proven safe in first in human trials. METHODS: The single chain variable fragment (scFv) of Miltuximab® and the CD3 binding sequence of Blinatumomab were combined in a standard BiTE format. Binding of the construct to immobilised recombinant CD3 and GPC-1 antigens was assessed by ELISA and BiaCore, and binding to cell surface-expressed antigens was measured by flow cytometry. The ability of MIL-38-CD3 to activate T cells was assessed using in vitro co-culture assays with tumour cell lines of varying GPC-1 expression by measurement of CD69 and CD25 expression, before cytolytic activity was assessed in a similar co-culture. The release of inflammatory cytokines from T cells was measured by ELISA and expression of PD-1 on the T cell surface was measured by flow cytometry. RESULTS: Binding activity of MIL-38-CD3 to both cell surface-expressed and immobilised recombinant GPC-1 and CD3 was retained. MIL-38-CD3 was able to mediate the activation of peripheral blood T cells from healthy individuals, resulting in the release of inflammatory cytokines TNF and IFN-g. Activation was reliant on GPC-1 expression as MIL-38-CD3 mediated only low level T cell activation in the presence of C3 cells (constitutively low GPC-1 expression). Activated T cells were redirected to lyse PCa cell lines PC3 and DU-145 (GPC-1 moderate or high expression, respectively) but could not kill GPC-1 negative Raji cells. The expression of PD-1 was up-regulated on the surface of MIL-38-CD3 activated T cells, suggesting potential for synergy with checkpoint inhibition. CONCLUSIONS: This study reports preclinical findings into the efficacy of targeting GPC-1 in PCa with BiTE construct MIL-38-CD3. We show the specificity and efficacy of the construct, supporting its further preclinical development.


Assuntos
Adenocarcinoma/patologia , Anticorpos Biespecíficos/farmacologia , Glipicanas/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/patologia , Anticorpos de Cadeia Única/farmacologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/imunologia , Adenocarcinoma/imunologia , Anticorpos Biespecíficos/imunologia , Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Complexo CD3/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Glipicanas/antagonistas & inibidores , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Subunidade alfa de Receptor de Interleucina-2/análise , Lectinas Tipo C/análise , Ativação Linfocitária , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias da Próstata/imunologia , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T Citotóxicos/metabolismo
16.
ACS Nano ; 14(10): 13739-13753, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32936613

RESUMO

Integrating nanomaterials with biological entities has led to the development of diagnostic tools and biotechnology-derived therapeutic products. However, to optimize the design of these hybrid bionanomaterials, it is essential to understand how controlling the biological interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid translation from the bench to the clinic. In this paper, we developed a micellar system that was assembled using modular antibody-polymer amphiphilic materials. The amphiphilic nature was established using either poly(ethylene glycol) (PEG) or a single-chain variable fragment (scFv) from an antibody as the hydrophile and a thermoresponsive polymer (poly(oligoethylene glycol) methyl ether methacrylate) as the hydrophobe. By varying the ratios of these components, a series of nanoparticles with different antibody content was self-assembled, where the surface presentation of targeting ligand was carefully controlled. In vitro and in vivo analysis of these systems identified a mismatch between the optimal targeting ligand density to achieve maximum cell association in vitro compared to tumor accumulation in vivo. For this system, we determined an optimum antibody density for both longer circulation and enhanced targeting to tumors that balanced stealthiness of the particle (to evade immune recognition as determined in both mouse models and in whole human blood) with enhanced accumulation achieved through receptor binding on tumor cells in solid tumors. This approach provides fundamental insights into how different antibody densities affect the interaction of designed nanoparticles with both target cells and immune cells, thereby offering a method to probe the intricate interplay between increased targeting efficiency and the subsequent immune response to nanoparticles.


Assuntos
Micelas , Nanopartículas , Ligantes , Polietilenoglicóis , Polímeros
17.
ACS Cent Sci ; 6(5): 727-738, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32490189

RESUMO

Increasing accumulation and retention of nanomedicines within tumor tissue is a significant challenge, particularly in the case of brain tumors where access to the tumor through the vasculature is restricted by the blood-brain barrier (BBB). This makes the application of nanomedicines in neuro-oncology often considered unfeasible, with efficacy limited to regions of significant disease progression and compromised BBB. However, little is understood about how the evolving tumor-brain physiology during disease progression affects the permeability and retention of designer nanomedicines. We report here the development of a modular nanomedicine platform that, when used in conjunction with a unique model of how tumorigenesis affects BBB integrity, allows investigation of how nanomaterial properties affect uptake and retention in brain tissue. By combining different in vivo longitudinal imaging techniques (including positron emission tomography and magnetic resonance imaging), we have evaluated the retention of nanomedicines with predefined physicochemical properties (size and surface functionality) and established a relationship between structure and tissue accumulation as a function of a new parameter that measures BBB leakiness; this offers significant advancements in our ability to relate tumor accumulation of nanomedicines to more physiologically relevant parameters. Our data show that accumulation of nanomedicines in brain tumor tissue is better correlated with the leakiness of the BBB than actual tumor volume. This was evaluated by establishing brain tumors using a spontaneous and endogenously derived glioblastoma model providing a unique opportunity to assess these parameters individually and compare the results across multiple mice. We also quantitatively demonstrate that smaller nanomedicines (20 nm) can indeed cross the BBB and accumulate in tumors at earlier stages of the disease than larger analogues, therefore opening the possibility of developing patient-specific nanoparticle treatment interventions in earlier stages of the disease. Importantly, these results provide a more predictive approach for designing efficacious personalized nanomedicines based on a particular patient's condition.

18.
Expert Opin Drug Deliv ; 17(9): 1189-1211, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32524851

RESUMO

INTRODUCTION: Monoclonal antibodies have been utilized in clinical and basic research for the treatment of various malignancies. Whilst all therapeutically approved monoclonal antibodies or fragments thereof are directed against cell-surface receptors or proteins of the human secretome, intracellular antigen targeting strategies still await translation into the clinic. This contradicts the notion of antibodies being the magic bullet concept as many cancer targets are out of reach. AREAS COVERED: This review provides a summary of intracellular translocation strategies that were successfully employed for antibody delivery in preclinical studies. Examples encompass a variety of different approaches such as polymeric and lipid-based nanoparticles (NP), biomimetics, bispecific antibody constructs, the use of cell-penetrating peptides, as well as various sophisticated combinations thereof. We will further discuss endosomal escape as the major bottleneck in functional intracellular transport and provide suggestions on how to overcome current challenges. EXPERT OPINION: Despite significant advances in protein delivery technologies, reports of highly efficient transport vehicles are sparse when systemically applied in vivo. Consequently, more detailed mechanistic studies are needed to identify and optimize the molecular 'Achilles heel' of individual methodologies. Ultimately, to target intracellular proteins that have been undruggable in the past, a combination of strategies may be required.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Sistemas de Liberação de Medicamentos , Transporte Biológico , Peptídeos Penetradores de Células/metabolismo , Endossomos/metabolismo , Humanos , Nanopartículas/química , Polímeros/química
19.
J Perinatol ; 40(8): 1193-1201, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433510

RESUMO

OBJECTIVE: To test the hypothesis that infants born <30 weeks' gestation supported by Seattle-PAP will have lower rates of continuous positive airway pressure (CPAP) failure than infants supported with conventional, Fisher&Paykel-CPAP (FP-CPAP). STUDY DESIGN: Randomized trial (3/2017-01/2019) at 5 NICUs. The primary outcome was CPAP failure; subgroup analyses (gestational age, receipt antenatal corticosteroids) were performed. RESULTS: A total of 232 infants were randomized. Infants in the Seattle-PAP and FP-CPAP groups had mean gestational ages of 27.0 and 27.2 weeks, respectively. We observed no differences in rates of treatment failure between Seattle-PAP (40/112, 35.7%) and FP-CPAP (38/120, 31.7%; risk difference, 4.1%; 95% CI, -8.1-16.2; P = 0.51). Subgroup analysis indicated no differences in rates of CPAP failure. We observed no differences between the two groups in frequencies of adverse events or duration of respiratory support. CONCLUSIONS: Among infants born <30 weeks' gestation, rates of CPAP failure did not differ between Seattle-PAP and FP-CPAP.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Síndrome do Desconforto Respiratório do Recém-Nascido , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Gravidez , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia
20.
J Proteome Res ; 19(5): 2149-2158, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32207952

RESUMO

Proteomic analysis of bioreactor supernatants can inform on cellular metabolic status, viability, and productivity, as well as product quality, which can in turn help optimize bioreactor operation. Incubating mammalian cells in bioreactors requires the addition of polymeric surfactants such as Pluronic F68, which reduce the sheer stress caused by agitation. However, these surfactants are incompatible with mass spectrometry proteomics and must be eliminated during sample preparation. Here, we compared four different sample preparation methods to eliminate polymeric surfactants from filtered bioreactor supernatant samples: organic solvent precipitation; filter-assisted sample preparation (FASP); S-Trap; and single-pot, solid-phase, sample preparation (SP3). We found that SP3 and S-Trap substantially reduced or eliminated the polymer(s), but S-Trap provided the most robust cleanup and highest quality data. Additionally, we observed that SP3 sample preparation of our samples and in other published data sets was associated with partial alkylation of cysteines, which could impact the confidence and robustness of protein identification and quantification. Finally, we observed that several commercial mammalian cell culture media and media supplements also contained polymers with similar mass spectrometry profiles, and we suggest that proteomic analyses in these media will also benefit from the use of S-Trap sample preparation.


Assuntos
Proteômica , Tensoativos , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Poloxâmero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA