Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32582569

RESUMO

Cellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications stages, are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a "binary fission" mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal vs. external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota.


Assuntos
Toxoplasma , Animais , Bovinos , Divisão Celular , Núcleo Celular , Cavalos , Estágios do Ciclo de Vida , Suínos
2.
Vet Parasitol ; 245: 116-118, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28969829

RESUMO

Several reports indicate the presence of small tissue cysts associated with Sarcocystis neurona infections. Several failed attempts to develop tissue cysts in potential intermediate host using in vitro derived parasites originally isolated from horses with equine protozoal myeloencephalitis suggest that the experimental methods to achieve bradyzoites with those isolates was not possible. Those prior studies reported the lack of detectable sarcocysts based on histology and in vivo feeding trials. A recent report of successful production and detection of small sarcocysts triggered us to review archived tissues from earlier experimental infection studies. The retrospective review sought to determine if small sized sarcocysts were not detected due to their relatively smaller size and infrequency as compared to larger sized sarcocysts produced with other isolates in these experimental inoculation trials. Tissues from two prior in vivo inoculation studies, involving in vitro-produced parasites inoculated into laboratory-reared cats and raccoons, were re-examined by immunohistochemistry staining to more easily detect the tissue cysts. In the experimental cat study no small tissue cysts were seen, consistent with the original publication results. However, in the experimental raccoon study, one raccoon inoculated with an EPM-derived isolate, SN-UCD1, had small sarcocysts not reported in the original publication. This retrospective study suggests that much closer scrutiny of tissues, including the use of immunohistochemistry on tissue sections is required to detect the smaller S. neurona sarcocysts associated with the experimental inoculations of the isolates originally derived from horses with EPM.


Assuntos
Doenças do Gato/parasitologia , Cistos/veterinária , Imuno-Histoquímica/veterinária , Sarcocystis/fisiologia , Sarcocistose/parasitologia , Animais , Doenças do Gato/patologia , Gatos , Cistos/parasitologia , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Estudos Retrospectivos , Sarcocistose/patologia
3.
BMC Vet Res ; 13(1): 128, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490374

RESUMO

BACKGROUND: Equine besnoitiosis, caused by Besnoitia bennetti, and equine protozoal myeloencephalitis (EPM), caused by Sarcocystis neurona and Neospora hughesi are relevant equine diseases in the Americas that have been scarcely studied in Europe. Thus, a serosurvey of these cystogenic coccidia was carried out in Southern Spain. A cross-sectional study was performed and serum samples from horses (n = 553), donkeys (n = 85) and mules (n = 83) were included. An in-house enzyme-linked immunosorbent assay (ELISA) was employed to identify a Besnoitia spp. infection and positive results were confirmed by an a posteriori western blot. For Neospora spp. and Sarcocystis spp., infections were detected using in-house ELISAs based on the parasite surface antigens N. hughesi rNhSAG1 and S. neurona rSnSAG2/3/4. Risk factors associated with these protozoan infections were also investigated. RESULTS: Antibodies against Besnoitia spp., Neospora spp. and Sarcocystis spp. infections were detected in 51 (7.1%), 46 (6.4%) and 20 (2.8%) of 721 equids, respectively. The principal risk factors associated with a higher seroprevalence of Besnoitia spp. were the host species (mule or donkey), the absence of shelter and the absence of a rodent control programme. The presence of rodents was the only risk factor for Neospora spp. infection. CONCLUSIONS: This study was the first extensive serosurvey of Besnoitia spp. infection in European equids accomplished by two complementary tests and gives evidence of the presence of specific antibodies in these populations. However, the origin of the infection is still unclear. Further parasite detection and molecular genotyping are needed to identify the causative Besnoitia and Neospora species. Finally, cross-reactions with antibodies directed against other species of Sarcocystis might explain the positive reactions against the S. neurona antigens.


Assuntos
Anticorpos Antiprotozoários/sangue , Coccídios , Coccidiose/veterinária , Doenças dos Cavalos/parasitologia , Sarcocystidae , Animais , Coccídios/imunologia , Coccídios/isolamento & purificação , Coccidiose/sangue , Coccidiose/imunologia , Estudos Transversais , Feminino , Doenças dos Cavalos/sangue , Doenças dos Cavalos/imunologia , Cavalos , Masculino , Neospora , Sarcocystidae/imunologia , Sarcocystidae/isolamento & purificação , Sarcocystis , Estudos Soroepidemiológicos , Espanha
4.
mBio ; 6(1)2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25670772

RESUMO

UNLABELLED: Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. IMPORTANCE: Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies.


Assuntos
Genoma de Protozoário , Sarcocystis/crescimento & desenvolvimento , Sarcocystis/genética , Sarcocistose/parasitologia , Sarcocistose/veterinária , Animais , Humanos , Estágios do Ciclo de Vida , Filogenia , Proteínas de Protozoários/genética , Sarcocystis/classificação , Sarcocystis/metabolismo
5.
Parasitology ; 141(11): 1399-405, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923662

RESUMO

Sarcocystis neurona is an apicomplexan parasite that causes severe neurological disease in horses and marine mammals. The Apicomplexa are all obligate intracellular parasites that lack purine biosynthesis pathways and rely on the host cell for their purine requirements. Hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK) are key enzymes that function in two complementary purine salvage pathways in apicomplexans. Bioinformatic searches of the S. neurona genome revealed genes encoding HXGPRT, AK and all of the major purine salvage enzymes except purine nucleoside phosphorylase. Wild-type S. neurona were able to grow in the presence of mycophenolic acid (MPA) but were inhibited by 6-thioxanthine (6-TX), suggesting that the pathways involving either HXGPRT or AK are functional in this parasite. Prior work with Toxoplasma gondii demonstrated the utility of HXGPRT as a positive-negative selection marker. To enable the use of HXGPRT in S. neurona, the SnHXGPRT gene sequence was determined and a gene-targeting plasmid was transfected into S. neurona. SnHXGPRT-deficient mutants were selected with 6-TX, and single-cell clones were obtained. These Sn∆HXG parasites were susceptible to MPA and could be complemented using the heterologous T. gondii HXGPRT gene. In summary, S. neurona possesses both purine salvage pathways described in apicomplexans, thus allowing the use of HXGPRT as a positive-negative drug selection marker in this parasite.


Assuntos
Pentosiltransferases/genética , Purinas/metabolismo , Sarcocystis/genética , Sarcocistose/parasitologia , Animais , Animais Geneticamente Modificados , Técnicas de Inativação de Genes , Teste de Complementação Genética , Cavalos , Hipoxantinas , Pentosiltransferases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sarcocystis/enzimologia , Toxoplasma/genética , Transfecção
6.
Infect Immun ; 75(9): 4255-62, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17576757

RESUMO

Neospora caninum, a causative agent of bovine abortions, is an apicomplexan parasite that is closely related to the human pathogen Toxoplasma gondii. Since a number of intracellular parasites, including T. gondii, have been shown to modulate host cell apoptosis, the present study was conducted to establish whether N. caninum is similarly capable of subverting apoptotic pathways in its host cells. Our results indicated that death receptor-mediated apoptosis is repressed during N. caninum infection, and the data further showed that the executioner caspase, caspase 3, does not become activated in the infected cells. Surprisingly, nuclear translocation of the NF-kappaB subunit p65 was not detected in N. caninum-infected cells, although this host transcription factor has been shown to upregulate prosurvival genes in cells infected with T. gondii. Consistent with these findings, the distinct accumulation of phosphorylated IkappaB that is seen at the parasitophorous vacuole membrane (PVM) of T. gondii was not apparent on the N. caninum PVM. Although a putative IkappaB kinase activity was detected in N. caninum extracts, thereby implying that this parasite is capable of modulating NF-kappaB translocation into the host cell nucleus, the data collectively suggest that a profound and sustained activation of the NF-kappaB pathway is not central to the ability of N. caninum to prevent apoptosis of their host cells.


Assuntos
Apoptose/fisiologia , NF-kappa B/metabolismo , Neospora/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Apoptose/genética , Caspase 3/metabolismo , Inibidores de Caspase , Bovinos , Linhagem Celular , DNA/antagonistas & inibidores , DNA/metabolismo , Dano ao DNA , Ativação Enzimática , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Humanos , Camundongos , Receptores de Morte Celular/fisiologia , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo
7.
Int J Parasitol ; 36(10-11): 1197-204, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16790243

RESUMO

A putative nucleoside triphosphate hydrolase (NTPase) gene was identified in a database of expressed sequence tags (ESTs) from the apicomplexan parasite Sarcocystis neurona. Analysis of culture-derived S. neurona merozoites demonstrated a dithiol-dependent NTPase activity, consistent with the presence of a homologue to the TgNTPases of Toxoplasma gondii. A complete cDNA was obtained for the S. neurona gene and the predicted amino acid sequence shared 38% identity with the two TgNTPase isoforms from T. gondii. Based on the obvious homology, the S. neurona protein was designated SnNTP1. The SnNTP1 cDNA encodes a polypeptide of 714 amino acids with a predicted 22-residue signal peptide and an estimated mature molecular mass of 70kDa. Southern blot analysis of the SnNTP1 locus revealed that the gene exists as a single copy in the S. neurona genome, unlike the multiple gene copies that have been observed in T. gondii and Neospora caninum. Analyses of the SnNTP1 protein demonstrated that it is soluble and secreted into the culture medium by extracellular merozoites. Surprisingly, indirect immunofluorescence analysis of intracellular S. neurona revealed apical localisation of SnNTP1 and temporal expression characteristics that are comparable with the microneme protein SnMIC10. The absence of SnNTP1 during much of endopolygeny implies that this protein does not serve a function during intracellular growth and development of S. neurona schizonts. Instead, SnNTP1 may play a role in events that occur during or proximal to merozoite egress from and/or invasion into cells.


Assuntos
Nucleosídeo-Trifosfatase/genética , Sarcocystis/genética , Animais , Sequência de Bases , Southern Blotting , Western Blotting , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Técnica Indireta de Fluorescência para Anticorpo , Genes de Protozoários , Estágios do Ciclo de Vida , Dados de Sequência Molecular , Neospora/genética , Nucleosídeo-Trifosfatase/análise , Parasitologia/métodos , Alinhamento de Sequência , Homologia de Sequência , Tolueno/análogos & derivados , Toxoplasma/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA