Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 62(24): 11232-11259, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31724864

RESUMO

The treatment of tumors driven by overexpression or amplification of MYC oncogenes remains a significant challenge in drug discovery. Here, we present a new strategy toward the inhibition of MYC via the disruption of the protein-protein interaction between MYC and its chromatin cofactor WD Repeat-Containing Protein 5. Blocking the association of these proteins is hypothesized to disrupt the localization of MYC to chromatin, thus disrupting the ability of MYC to sustain tumorigenesis. Utilizing a high-throughput screening campaign and subsequent structure-guided design, we identify small-molecule inhibitors of this interaction with potent in vitro binding affinity and report structurally related negative controls that can be used to study the effect of this disruption. Our work suggests that disruption of this protein-protein interaction may provide a path toward an effective approach for the treatment of multiple tumors and anticipate that the molecules disclosed can be used as starting points for future efforts toward compounds with improved drug-like properties.


Assuntos
Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Ácido Salicílico/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Repetições WD40
2.
ACS Chem Biol ; 14(3): 325-331, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30735352

RESUMO

Activating mutations in RAS can lead to oncogenesis by enhancing downstream signaling, such as through the MAPK and PI3K pathways. Therefore, therapeutically targeting RAS may perturb multiple signaling pathways simultaneously. One method for modulating RAS signaling is to target the activity of the guanine nucleotide exchange factor SOS1. Our laboratory has discovered compounds that bind to SOS1 and activate RAS. Interestingly, these SOS1 agonist compounds elicit biphasic modulation of ERK phosphorylation and simultaneous inhibition of AKT phosphorylation levels. Here, we utilized multiple chemically distinct compounds to elucidate whether these effects on MAPK and PI3K signaling by SOS1 agonists were mechanistically linked. In addition, we used CRISPR/Cas9 gene-editing to generate clonally derived SOS1 knockout cells and identified a potent SOS1 agonist that rapidly elicited on-target molecular effects at substantially lower concentrations than those causing off-target effects. Our findings will allow us to further define the on-target utility of SOS1 agonists.


Assuntos
Benzimidazóis/química , Indóis/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinazolinas/química , Proteína SOS1/agonistas , Benzimidazóis/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Humanos , Indóis/metabolismo , Quinazolinas/metabolismo
3.
J Med Chem ; 61(19): 8875-8894, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205005

RESUMO

Son of sevenless homologue 1 (SOS1) is a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on RAS. In its active form, GTP-bound RAS is responsible for numerous critical cellular processes. Aberrant RAS activity is involved in ∼30% of all human cancers; hence, SOS1 is an attractive therapeutic target for its role in modulating RAS activation. Here, we describe a new series of benzimidazole-derived SOS1 agonists. Using structure-guided design, we discovered small molecules that increase nucleotide exchange on RAS in vitro at submicromolar concentrations, bind to SOS1 with low double-digit nanomolar affinity, rapidly enhance cellular RAS-GTP levels, and invoke biphasic signaling changes in phosphorylation of ERK 1/2. These compounds represent the most potent series of SOS1 agonists reported to date.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas/normas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/agonistas , Proteína SOS1/metabolismo , Benzimidazóis/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Fosforilação , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Relação Estrutura-Atividade
4.
ACS Med Chem Lett ; 9(9): 941-946, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30258545

RESUMO

Proteins in the RAS family are important regulators of cellular signaling and, when mutated, can drive cancer pathogenesis. Despite considerable effort over the last 30 years, RAS proteins have proven to be recalcitrant therapeutic targets. One approach for modulating RAS signaling is to target proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report hit-to-lead studies on quinazoline-containing compounds that bind to SOS1 and activate nucleotide exchange on RAS. Using structure-based design, we refined the substituents attached to the quinazoline nucleus and built in additional interactions not present in the initial HTS hit. Optimized compounds activate nucleotide exchange at single-digit micromolar concentrations in vitro. In HeLa cells, these quinazolines increase the levels of RAS-GTP and cause signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway.

5.
J Med Chem ; 61(14): 6002-6017, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29856609

RESUMO

Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at submicromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase-extracellular regulated kinase (MAPK-ERK) pathway, resulting in a decrease in pERK1/2T202/Y204 protein levels at higher compound concentrations.


Assuntos
Desenho de Fármacos , Indóis/química , Indóis/farmacologia , Piperidinas/química , Proteína SOS1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Proteína SOS1/química , Relação Estrutura-Atividade , Proteínas ras/química
6.
Mol Cancer Ther ; 17(5): 1051-1060, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440291

RESUMO

Oncogenic mutation of RAS results in aberrant cellular signaling and is responsible for more than 30% of all human tumors. Therefore, pharmacologic modulation of RAS has attracted great interest as a therapeutic strategy. Our laboratory has recently discovered small molecules that activate Son of Sevenless (SOS)-catalyzed nucleotide exchange on RAS and inhibit downstream signaling. Here, we describe how pharmacologically targeting SOS1 induced biphasic modulation of RAS-GTP and ERK phosphorylation levels, which we observed in a variety of cell lines expressing different RAS-mutant isoforms. We show that compound treatment caused an increase in phosphorylation at ERK consensus motifs on SOS1 that was not observed with the expression of a non-phosphorylatable S1178A SOS1 mutant or after pretreatment with an ERK inhibitor. Phosphorylation at S1178 on SOS1 is known to inhibit the association between SOS1 and GRB2 and disrupt SOS1 membrane localization. Consistent with this, we show that wild-type SOS1 and GRB2 dissociated in a time-dependent fashion in response to compound treatment, and conversely, this interaction was enhanced with the expression of an S1178A SOS1 mutant. Furthermore, in cells expressing either S1178A SOS1 or a constitutively membrane-bound CAAX box tagged SOS1 mutant, we observed elevated RAS-GTP levels over time in response to compound, as compared with the biphasic changes in RAS-GTP exhibited in cells expressing wild-type SOS1. These results suggest that small molecule targeting of SOS1 can elicit a biphasic modulation of RAS-GTP and phospho-ERK levels through negative feedback on SOS1 that regulates the interaction between SOS1 and GRB2. Mol Cancer Ther; 17(5); 1051-60. ©2018 AACR.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Proteína SOS1/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Estrutura Molecular , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteína SOS1/genética , Bibliotecas de Moléculas Pequenas/química , Proteínas ras/genética
7.
Anal Biochem ; 548: 44-52, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444450

RESUMO

K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Células HeLa , Humanos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína SOS1/química , Proteína SOS1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA