Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Microbiome ; 11(1): 100, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158960

RESUMO

BACKGROUND AND AIMS: The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS: A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS: Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS: Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Microbiota/genética , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/cirurgia
2.
J Am Soc Nephrol ; 34(4): 533-553, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36846952

RESUMO

SIGNIFICANCE STATEMENT: Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND: Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS: To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS: Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS: These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Uremia , Animais , Roedores , Disbiose/microbiologia , Adenosina Desaminase , Peptídeos e Proteínas de Sinalização Intercelular , Insuficiência Renal Crônica/etiologia
3.
Commun Med (Lond) ; 2: 127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217535

RESUMO

Background: Resolution of type 2 diabetes (T2D) is common following bariatric surgery, particularly Roux-en-Y gastric bypass. However, the underlying mechanisms have not been fully elucidated. Methods: To address this we compare the integrated serum, urine and faecal metabolic profiles of participants with obesity ± T2D (n = 80, T2D = 42) with participants who underwent Roux-en-Y gastric bypass or sleeve gastrectomy (pre and 3-months post-surgery; n = 27), taking diet into account. We co-model these data with shotgun metagenomic profiles of the gut microbiota to provide a comprehensive atlas of host-gut microbe responses to bariatric surgery, weight-loss and glycaemic control at the systems level. Results: Here we show that bariatric surgery reverses several disrupted pathways characteristic of T2D. The differential metabolite set representative of bariatric surgery overlaps with both diabetes (19.3% commonality) and body mass index (18.6% commonality). However, the percentage overlap between diabetes and body mass index is minimal (4.0% commonality), consistent with weight-independent mechanisms of T2D resolution. The gut microbiota is more strongly correlated to body mass index than T2D, although we identify some pathways such as amino acid metabolism that correlate with changes to the gut microbiota and which influence glycaemic control. Conclusion: We identify multi-omic signatures associated with responses to surgery, body mass index, and glycaemic control. Improved understanding of gut microbiota - host co-metabolism may lead to novel therapies for weight-loss or diabetes. However, further experiments are required to provide mechanistic insight into the role of the gut microbiota in host metabolism and establish proof of causality.

4.
Cancer Immunol Immunother ; 71(11): 2619-2629, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35316367

RESUMO

The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.


Assuntos
Neoplasias Colorretais , Microbiota , Bactérias , Neoplasias Colorretais/patologia , Disbiose/microbiologia , Humanos , Imunoglobulina A , Mucosa Intestinal , Células T de Memória
5.
Clin Transl Gastroenterol ; 13(7): e00428, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297393

RESUMO

INTRODUCTION: Familial adenomatous polyposis (FAP) is a condition caused by a constitutional pathogenic variant of the adenomatous polyposis coli gene that results in intestinal adenoma formation and colorectal cancer, necessitating pre-emptive colectomy. We sought to examine interaction between the mucosal immune system and commensal bacteria in FAP to test for immune dysfunction that might accelerate tumorigenesis. METHODS: Colonic biopsies were obtained from macroscopically normal mucosal tissue from 14 healthy donors and 13 patients with FAP during endoscopy or from surgical specimens. Intraepithelial and lamina propria lymphocytes were phenotyped. Intraepithelial microbes were labeled with anti-IgA/IgG and analyzed by flow cytometry. RESULTS: Proportions of resident memory CD103-expressing CD8 + and γδ T-cell receptor + intraepithelial lymphocytes were dramatically reduced in both the left and right colon of patients with FAP compared with healthy controls. In lamina propria, T cells expressed less CD103, and CD4 + CD103 + cells expressed less CD73 ectonucleotidase. IgA coating of epithelia-associated bacteria, IgA + peripheral B cells, and CD4 T-cell memory responses to commensal bacteria were increased in FAP. DISCUSSION: Loss of resident memory T cells and γδ T cells in mucosal tissue of patients with FAP accompanies intestinal microbial dysbiosis previously reported in this precancerous state and suggests impaired cellular immunity and tumor surveillance. This may lead to barrier dysfunction, possible loss of regulatory T-cell function, and excess IgA antibody secretion. Our data are the first to implicate mucosal immune dysfunction as a contributing factor in this genetically driven disease and identify potentially critical pathways in the etiology of CRC.


Assuntos
Polipose Adenomatosa do Colo , Microbiota , Polipose Adenomatosa do Colo/genética , Bactérias , Humanos , Intestinos/patologia , Mucosa/metabolismo , Mucosa/patologia
6.
Mol Metab ; 59: 101454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150905

RESUMO

OBJECTIVE: Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression METHODS: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis RESULTS: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma CONCLUSIONS: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.


Assuntos
Aminoácidos de Cadeia Ramificada , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Obesidade , Ubiquitina-Proteína Ligases , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Knockout , Obesidade/complicações , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Nat Med ; 28(2): 303-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177860

RESUMO

Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages-acute coronary syndrome, chronic IHD and IHD with heart failure-and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , Estudos Longitudinais , Metaboloma , Pessoa de Meia-Idade
8.
Microbiome ; 9(1): 104, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962692

RESUMO

BACKGROUND: The gut microbiome and iron status are known to play a role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear. RESULTS: Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n = 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n = 130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The transcriptomic findings were replicated in human primary hepatocytes, where iron supplementation also led to triglycerides accumulation and induced the expression of lipid and iron metabolism genes in synergy with palmitic acid. We further explored the direct impact of the microbiome on iron metabolism and liver fact accumulation through transplantation of faecal microbiota into recipient's mice. In line with the results in humans, transplantation from 'high ferritin donors' resulted in alterations in several genes related to iron metabolism and fatty acid accumulation in recipient's mice. CONCLUSIONS: Altogether, a significant interplay among the gut microbiome, iron status and liver fat accumulation is revealed, with potential significance for target therapies. Video abstract.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Microbioma Gastrointestinal/genética , Ferro , Camundongos , Obesidade
9.
Microbiome ; 8(1): 88, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513301

RESUMO

BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.


Assuntos
Membrana Externa Bacteriana , Bacteroides thetaiotaomicron , Células Dendríticas , Doenças Inflamatórias Intestinais , Membrana Externa Bacteriana/imunologia , Colite Ulcerativa , Doença de Crohn , Células Dendríticas/microbiologia , Vesículas Extracelulares/imunologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal , Masculino
10.
J Proteome Res ; 19(8): 3326-3339, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544340

RESUMO

Methotrexate (MTX) is a chemotherapeutic agent that can cause a range of toxic side effects including gastrointestinal damage, hepatotoxicity, myelosuppression, and nephrotoxicity and has potentially complex interactions with the gut microbiome. Following untargeted UPLC-qtof-MS analysis of urine and fecal samples from male Sprague-Dawley rats administered at either 0, 10, 40, or 100 mg/kg of MTX, dose-dependent changes in the endogenous metabolite profiles were detected. Semiquantitative targeted UPLC-MS detected MTX excreted in urine as well as MTX and two metabolites, 2,4-diamino-N-10-methylpteroic acid (DAMPA) and 7-hydroxy-MTX, in the feces. DAMPA is produced by the bacterial enzyme carboxypeptidase glutamate 2 (CPDG2) in the gut. Microbiota profiling (16S rRNA gene amplicon sequencing) of fecal samples showed an increase in the relative abundance of Firmicutes over the Bacteroidetes at low doses of MTX but the reverse at high doses. Firmicutes relative abundance was positively correlated with DAMPA excretion in feces at 48 h, which were both lower at 100 mg/kg compared to that seen at 40 mg/kg. Overall, chronic exposure to MTX appears to induce community and functionality changes in the intestinal microbiota, inducing downstream perturbations in CPDG2 activity, and thus may delay MTX detoxication to DAMPA. This reduction in metabolic clearance might be associated with increased gastrointestinal toxicity.


Assuntos
Microbioma Gastrointestinal , Metotrexato , Animais , Cromatografia Líquida , Fezes , Masculino , Metotrexato/toxicidade , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
11.
Microb Genom ; 6(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32436839

RESUMO

Klebsiella spp. are frequently enriched in the gut microbiota of preterm neonates, and overgrowth is associated with necrotizing enterocolitis (NEC), nosocomial infections and late-onset sepsis. Little is known about the genomic and phenotypic characteristics of preterm-associated Klebsiella, as previous studies have focused on the recovery of antimicrobial-resistant isolates or culture-independent molecular analyses. The aim of this study was to better characterize preterm-associated Klebsiella populations using phenotypic and genotypic approaches. Faecal samples from a UK cohort of healthy and sick preterm neonates (n=109) were screened on MacConkey agar to isolate lactose-positive Enterobacteriaceae. Whole-genome sequences were generated for Klebsiella spp., and virulence and antimicrobial resistance genes identified. Antibiotic susceptibility profiling and in vitro macrophage and iron assays were undertaken for the Klebsiella strains. Metapangenome analyses with a manually curated genome dataset were undertaken to examine the diversity of Klebsiella oxytoca and related bacteria in a publicly available shotgun metagenome dataset. Approximately one-tenth of faecal samples harboured Klebsiella spp. (Klebsiella pneumoniae, 7.3 %; Klebsiella quasipneumoniae, 0.9 %; Klebsiella grimontii, 2.8 %; Klebsiella michiganensis, 1.8 %). Isolates recovered from NEC- and sepsis-affected infants and those showing no signs of clinical infection (i.e. 'healthy') encoded multiple ß-lactamases. No difference was observed between isolates recovered from healthy and sick infants with respect to in vitro siderophore production (all encoded enterobactin in their genomes). All K. pneumoniae, K. quasipneumoniae, K. grimontii and K. michiganensis faecal isolates tested were able to reside and persist in macrophages, indicating their immune evasion abilities. Metapangenome analyses of published metagenomic data confirmed our findings regarding the presence of K. michiganensis in the preterm gut. There is little difference in the phenotypic and genomic characteristics of Klebsiella isolates recovered from healthy and sick infants. Identification of ß-lactamases in all isolates may prove problematic when defining treatment regimens for NEC or sepsis, and suggests that healthy preterm infants contribute to the resistome. Refined analyses with curated sequence databases are required when studying closely related species present in metagenomic data.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/microbiologia , Klebsiella/classificação , Macrófagos/microbiologia , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Estudos de Casos e Controles , Curadoria de Dados , Bases de Dados Genéticas , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Klebsiella/efeitos dos fármacos , Klebsiella/isolamento & purificação , Klebsiella/patogenicidade , Masculino , Metagenômica , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Células THP-1 , Reino Unido , Sequenciamento Completo do Genoma
12.
Clin Nutr ; 39(11): 3408-3418, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32199697

RESUMO

BACKGROUND & AIMS: Atherosclerosis is characterized by an inflammatory disease linked to excessive lipid accumulation in the artery wall. The Notch signalling pathway has been shown to play a key regulatory role in the regulation of inflammation. Recently, in vitro and pre-clinical studies have shown that apolipoprotein A-I binding protein (AIBP) regulates cholesterol metabolism (SREBP) and NOTCH signalling (haematopoiesis) and may be protective against atherosclerosis, but the evidence in humans is scarce. METHODS: We evaluated the APOA1bp-SREBF-NOTCH axis in association with atherosclerosis in two well-characterized cohorts of morbidly obese patients (n = 78) within the FLORINASH study, including liver transcriptomics, 1H NMR plasma metabolomics, high-resolution ultrasonography evaluating carotid intima-media thickness (cIMT), and haematological parameters. RESULTS: The liver expression levels of APOA1bp were associated with lower cIMT and leukocyte counts, a better plasma lipid profile and higher circulating levels of metabolites associated with lower risk of atherosclerosis (glycine, histidine and asparagine). Conversely, liver SREBF and NOTCH mRNAs were positively associated with atherosclerosis, liver steatosis, an unfavourable lipid profile, higher leukocytes and increased levels of metabolites linked to inflammation and CVD such as branched-chain amino acids and glycoproteins. APOA1bp and NOTCH signalling also had a strong association, as revealed by the negative correlations among APOA1bp expression levels and those of all NOTCH receptors and jagged ligands. CONCLUSIONS: We here provide the first evidence in human liver of the putative APOA1bp-SREBF-NOTCH axis signalling pathway and its association with atherosclerosis and inflammation.


Assuntos
Aterosclerose/etiologia , Obesidade Mórbida/genética , Racemases e Epimerases/metabolismo , Receptores Notch/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Adulto , Asparagina/metabolismo , Biópsia , Espessura Intima-Media Carotídea , Estudos Transversais , Feminino , Glicina/metabolismo , Histidina/metabolismo , Humanos , Inflamação , Fígado/metabolismo , Masculino , Metaboloma , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcriptoma , Adulto Jovem
13.
J Crohns Colitis ; 14(4): 525-537, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31665283

RESUMO

BACKGROUND AND AIMS: The intestinal microbiota is closely associated with resident memory lymphocytes in mucosal tissue. We sought to understand how acquired cellular and humoral immunity to the microbiota differ in health versus inflammatory bowel disease [IBD]. METHODS: Resident memory T cells [Trm] in colonic biopsies and local antibody responses to intraepithelial microbes were analysed. Systemic antigen-specific immune T and B cell memory to a panel of commensal microbes was assessed. RESULTS: Systemically, healthy blood showed CD4 and occasional CD8 memory T cell responses to selected intestinal bacteria, but few memory B cell responses. In IBD, CD8 memory T cell responses decreased although B cell responses and circulating plasmablasts increased. Possibly secondary to loss of systemic CD8 T cell responses in IBD, dramatically reduced numbers of mucosal CD8+ Trm and γδ T cells were observed. IgA responses to intraepithelial bacteria were increased. Colonic Trm expressed CD39 and CD73 ectonucleotidases, characteristic of regulatory T cells. Cytokines/factors required for Trm differentiation were identified, and in vitro-generated Trm expressed regulatory T cell function via CD39. Cognate interaction between T cells and dendritic cells induced T-bet expression in dendritic cells, a key mechanism in regulating cell-mediated mucosal responses. CONCLUSIONS: A previously unrecognised imbalance exists between cellular and humoral immunity to the microbiota in IBD, with loss of mucosal T cell-mediated barrier immunity and uncontrolled antibody responses. Regulatory function of Trm may explain their association with intestinal health. Promoting Trm and their interaction with dendritic cells, rather than immunosuppression, may reinforce tissue immunity, improve barrier function, and prevent B cell dysfunction in microbiota-associated disease and IBD aetiology.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/análise , Adulto , Antígenos CD/análise , Apirase/análise , Biópsia/métodos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Memória Imunológica/fisiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade
14.
Antonie Van Leeuwenhoek ; 109(5): 603-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26910402

RESUMO

Three human clinical strains (W9323(T), X0209(T) and X0394) isolated from a lung biopsy, blood and cerebral spinal fluid, respectively, were characterised using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequences showed the three strains belong to two novel branches within the genus Kroppenstedtia: 16S rRNA gene sequence analysis of W9323(T) showed close sequence similarity to Kroppenstedtia eburnea JFMB-ATE(T) (95.3 %), Kroppenstedtia guangzhouensis GD02(T) (94.7 %) and strain X0209(T) (94.6 %); sequence analysis of strain X0209(T) showed close sequence similarity to K. eburnea JFMB-ATE(T) (96.4 %) and K. guangzhouensis GD02(T) (96.0 %). Strains X0209(T) and X0394 were 99.9 % similar to each other by 16S rRNA gene sequence analysis. The DNA-DNA relatedness was 94.6 %, confirming that X0209(T) and X0394 belong to the same species. Chemotaxonomic data for strains W9323(T) and X0209(T) were consistent with those described for the members of the genus Kroppenstedtia: the peptidoglycan was found to contain LL-diaminopimelic acid; the major cellular fatty acids were identified as iso-C15 and anteiso-C15; and the major menaquinone was identified as MK-7. Differences in endospore morphology, carbon source utilisation profiles, and cell wall sugar patterns of strains W9323(T) and X0209(T), supported by phylogenetic analysis, enabled us to conclude that the strains each represent a new species within the genus Kroppenstedtia, for which the names Kroppenstedtia pulmonis sp. nov. (type strain W9323(T) = DSM 45752(T) = CCUG 68107(T)) and Kroppenstedtia sanguinis sp. nov. (type strain X0209(T) = DSM 45749(T) = CCUG 38657(T)) are proposed.


Assuntos
Infecções por Bactérias Gram-Positivas/microbiologia , Thermoactinomyces/isolamento & purificação , Adolescente , Idoso , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Feminino , Infecções por Bactérias Gram-Positivas/sangue , Infecções por Bactérias Gram-Positivas/líquido cefalorraquidiano , Humanos , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Esporos Bacterianos/citologia , Thermoactinomyces/classificação , Thermoactinomyces/citologia , Thermoactinomyces/genética
15.
Microbiology (Reading) ; 161(Pt 3): 565-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533445

RESUMO

This study monitored the dynamics and diversity of the human faecal 'Atopobium cluster' over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (six males and seven females) aged between 26 and 61 years. FISH was used to enumerate total (EUB338mix) and 'Atopobium cluster' (ATO291) bacteria, with counts ranging between 1.12×10(11) and 9.95×10(11), and 1.03×10(9) and 1.16×10(11) cells (g dry weight faeces)(-1), respectively. The 'Atopobium cluster' population represented 0.2-22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using 'Atopobium cluster'-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as Collinsella aerofaciens, Collinsella intestinalis/Collinsella stercoris, Collinsella tanakaei, Coriobacteriaceae sp. PEAV3-3, Eggerthella lenta, Gordonibacter pamelaeae, Olsenella profusa, Olsenella uli and Paraeggerthella hongkongensis in the DGGE profiles of individuals. Colony PCR was used to identify 'Atopobium cluster' bacteria isolated from faeces (n = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated Collinsella aerofaciens represented the predominant (88 % of isolates) member of the 'Atopobium cluster' found in human faeces, being found in nine individuals. Eggerthella lenta was identified in three individuals (3.6 % of isolates). Isolates of Collinsella tanakaei, an 'Enorma' sp. and representatives of novel species belonging to the 'Atopobium cluster' were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.


Assuntos
Actinobacteria/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Fezes/microbiologia , Microbiota , Actinobacteria/classificação , Actinobacteria/genética , Adulto , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
16.
Vet Microbiol ; 165(3-4): 469-74, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23618836

RESUMO

Three strains of a Gram-positive, catalase-positive, fermentative, non-lipophilic, previously unknown bacterium were isolated from urogenital samples taken from mares in Scotland (M401624/00/1) and Sweden (VM 2074 and VM 2298(T)). All were deposited with the CCUG with tentative identifications as Corynebacterium spp. The strains were characterized using a polyphasic taxonomic approach. Biochemically, the strains were very similar to each other, but phylogenetically distinct from Corynebacterium species with validly published names (≤95% sequence similarity). rpoB gene sequence data confirmed the strains belonged to the same species (>99% sequence similarity) and were distinct from species with validly published names (>13% sequence divergence). On the basis of phenotypic and sequence data, the strains represent a novel species within the genus Corynebacterium, for which the name Corynebacterium uterequi is proposed. The type strain is VM 2298(T) (=CCUG 61235(T)=DSM 45634(T)), isolated from equine uterus.


Assuntos
Infecções por Corynebacterium/veterinária , Corynebacterium/classificação , Corynebacterium/fisiologia , Doenças dos Cavalos/microbiologia , Filogenia , Sistema Urogenital/microbiologia , Animais , Corynebacterium/genética , Corynebacterium/isolamento & purificação , Infecções por Corynebacterium/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Genes Bacterianos/genética , Cavalos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Escócia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Suécia
17.
Br J Nutr ; 104 Suppl 2: S1-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20920376

RESUMO

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.


Assuntos
Trato Gastrointestinal/microbiologia , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Valor Nutritivo , Prebióticos , Animais , Fermentação , Gastroenteropatias/prevenção & controle , Humanos , Sistema Imunitário/fisiologia , Absorção Intestinal , Minerais/metabolismo , Neoplasias/prevenção & controle , Obesidade/prevenção & controle
18.
Microbiology (Reading) ; 156(Pt 11): 3329-3341, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20864478

RESUMO

Bifidobacteria in the infant faecal microbiota have been the focus of much interest, especially during the exclusive milk-feeding period and in relation to the fortification of infant formulae to better mimic breast milk. However, longitudinal studies examining the diversity and dynamics of the Bifidobacterium population of infants are lacking, particularly in relation to the effects of weaning. Using a polyphasic strategy, the Bifidobacterium populations of breast- and formula-fed infants were examined during the first 18 months of life. Bifidobacterium-specific denaturing gradient gel electrophoresis demonstrated that breast-fed infants harboured greater diversity than formula-fed infants and the diversity of the infants' Bifidobacterium populations increased with weaning. Twenty-seven distinctive banding profiles were observed from ∼1100 infant isolates using ribosomal intergenic spacer analysis, 14 biotypes of which were confirmed to be members of the genus Bifidobacterium. Two profiles (H, Bifidobacterium longum subsp. infantis; and I, Bifidobacterium bifidum) were common culturable biotypes, seen in 9/10 infants, while profile E (Bifidobacterium breve) was common among breast-fed infants. Overall, inter- and intra-individual differences were observed in the Bifidobacterium populations of infants between 1 and 18 months of age, although weaning was associated with increased diversity of the infant Bifidobacterium populations. Breast-fed infants generally harboured a more complex Bifidobacterium microbiota than formula-fed infants.


Assuntos
Bifidobacterium/isolamento & purificação , Aleitamento Materno , Fezes/microbiologia , Fórmulas Infantis , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Humanos , Lactente , Estudos Longitudinais , Especificidade da Espécie , Desmame
19.
Syst Appl Microbiol ; 27(1): 72-83, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15053324

RESUMO

It has long been thought that the genera Mobiluncus and Falcivibrio contain the same organisms. Using a polyphasic approach, it was found that Mobiluncus curtisii and Mobiluncus mulieris were the same as Falcivibrio vaginalis and Falcivibrio grandis, respectively. As the genus name Mobiluncus takes precedence, it is proposed that F. vaginalis and F. grandis be transferred to the genus Mobiluncus. In agreement with previous studies, results from phenotypic tests did not support the separation of M. curtisii strains into its two subspecies, M. curtisii subsp. curtisii and M. curtisii subsp. holmesii. Phenotypic complexity within M. curtisii dictates that the species should be treated as a complex until more in-depth analyses of the species have been performed. Phylogenetic analyses, based on 16S rRNA gene sequences, demonstrated that the genus Mobiluncus was associated with Varibaculum cambriense and the two subspecies of Actinomyces neuii, and that A. neuii is only distantly related to Actinomyces sensu stricto.


Assuntos
Bacteroides/classificação , Mobiluncus/classificação , Proteínas de Bactérias/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Eletroforese em Gel de Poliacrilamida , Mobiluncus/genética , Mobiluncus/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Alinhamento de Sequência
20.
Int J Syst Evol Microbiol ; 52(Pt 3): 995-999, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12054269

RESUMO

Five strains of an unusual catalase-negative Gram-positive asporogenous rod-shaped bacterium from human sources were subjected to a polyphasic taxonomic study. The presence of fructose-6-phosphate phosphoketolase, a key enzyme of bifidobacterial hexose metabolism, indicated the strains were members of the genus Bifidobacterium but they did not correspond to any of the recognized species of this genus on the basis of biochemical profiles and whole-cell protein analyses. Comparative 16S rRNA gene sequencing confirmed the placement of the isolates in the genus Bifidobacterium, and demonstrated they represent a hitherto unknown subline within the genus displaying > 5% sequence divergence with recognized species. Based on both phenotypic and phylogenetic criteria, it is proposed that the isolates recovered from human sources be classified as a new species, Bifidobacterium scardovii sp. nov.; the type strain is CCUG 13008T (= DSM 13734T).


Assuntos
Bifidobacterium/classificação , Bifidobacterium/genética , Sangue/microbiologia , Quadril/microbiologia , Urina/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , DNA Ribossômico/análise , Feminino , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA