Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1216782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655220

RESUMO

Introduction: Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. Biosynthesized nanoparticle (NP) composite compounds have attracted attention as environmentally safe materials that possess antibacterial activity that could be used in managing plant diseases. Methods: During this study, a nanocomposite of two important elements, nickel and silicon, was biosynthesized using extraction of saffron stigmas (Crocus sativus L.). Characterization of obtained nickel-silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). Antibacterial activities of the biosynthesized Ni-SiO2 nanocomposite against Xoo were tested by measuring bacterial growth, biofilm formation, and dead Xoo cells. Results and discussions: The bacterial growth (OD600) and biofilm formation (OD570) of Xoo treated with distilled water (control) was found to be 1.21 and 1.11, respectively. Treatment with Ni-SiO2 NPs composite, respectively, reduced the growth and biofilm formation by 89.07% and 80.40% at 200 µg/ml. The impact of obtained Ni-SiO2 nanocomposite at a concentration of 200 µg/ml was assayed on infected rice plants. Treatment of rice seedlings with Ni-SiO2 NPs composite only had a plant height of 64.8 cm while seedlings treated with distilled water reached a height of 45.20 cm. Notably, Xoo-infected seedlings treated with Ni-SiO2 NPs composite had a plant height of 57.10 cm. Furthermore, Ni-SiO2 NPs composite sprayed on inoculated seedlings had a decrease in disease leaf area from 43.83% in non-treated infected seedlings to 13.06% in treated seedlings. The FTIR spectra of biosynthesized Ni-SiO2 nanocomposite using saffron stigma extract showed different bands at 3,406, 1,643, 1,103, 600, and 470 cm-1. No impurities were found in the synthesized composite. Spherically shaped NPs were observed by using TEM and SEM. EDS revealed that Ni-SiO2 nanoparticles (NPs) have 13.26% Ni, 29.62% Si, and 57.11% O. Xoo treated with 200 µg/ml of Ni-SiO2 NPs composite drastically increased the apoptosis of bacterial cells to 99.61% in comparison with 2.23% recorded for the control. Conclusions: The application of Ni-SiO2 NPs significantly improved the vitality of rice plants and reduced the severity of BLB.

2.
Environ Toxicol Pharmacol ; 103: 104262, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699441

RESUMO

Acute kidney injury (AKI) caused by Cis is considered one of the most severe adverse effects, which restricts its use and efficacy. This study seeks to examine the potential reno-protective impact of phenolic compound Hydroxytyrosol (HT) against Cis-induced AKI and the possible involvement of the mi-RNA25/Ox-LDL/NOX4 pathway elucidating the probable implicated molecular mechanisms. Forty rats were placed into 5 groups. Group I received saline only. Group II received Cis only. Group III, IV, and V received 20, 50, and 100 mg/kg b.w, of HT, respectively, with Cis delivery. NOX4, Ox-LDL, and gene expression of mi-RNA 25, TNF-α, and HO-1 in renal tissue were detected. HT showed reno-protective effect and significantly upregulated mi-RNA 25 and HO-1 as well as decreased the expression of NOX4, Ox-LDL, and TNF-α. In conclusion, HT may be promising in the fight against Cis-induced AKI through modulation of mi-RNA25/Ox-LDL/NOX4 pathway.

3.
Biomedicines ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37760826

RESUMO

Prostate cancer treatment poses significant challenges due to its varying aggressiveness, potential for metastasis, and the complexity of treatment options. Balancing the effectiveness of therapies, minimizing side effects, and personalizing treatment strategies are ongoing challenges in managing this disease. Significant advances in the use of nanotechnology for the treatment of prostate cancer with high specificity, sensitivity, and efficacy have recently been made. This study aimed to synthesize and characterize a novel Cu/Fe layer double hydroxide (LDH) nanocomposite for use as an anticancer agent to treat prostate cancer. Cu/Fe LDH nanocomposites with a molar ratio of 5:1 were developed using a simple co-precipitation approach. FT-IR, XRD, SEM, TEM, TGA, and zeta potential analyses confirmed the nanocomposite. Moreover, the MTT cell viability assay, scratch assay, and flow cytometry were utilized to examine the prospective anticancer potential of Cu/Fe LDH on a prostate cancer (PC-3) cell line. We found that Cu/Fe LDH reduced cell viability, inhibited cell migration, induced G1/S phase cell cycle arrest, and triggered apoptotic effect in prostate cancer cells. The findings also indicated that generating reactive oxygen species (ROS) formation could improve the biological activity of Cu/Fe LDH. Additionally, Cu/Fe LDH showed a good safety impact on the normal lung fibroblast cell line (WI-38). Collectively, these findings demonstrate that the Cu/Fe LDH nanocomposite exhibited significant anticancer activities against PC-3 cells and, hence, could be used as a promising strategy in prostate cancer treatment.

4.
Front Cell Infect Microbiol ; 13: 1134802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293206

RESUMO

There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T , Epitopos de Linfócito B , Peptídeos , Vacinas de Subunidades Antigênicas , Aminoácidos , Endopeptidases , Biologia Computacional
5.
Biomedicines ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189672

RESUMO

A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.

6.
Sci Rep ; 13(1): 7227, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142660

RESUMO

Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Óxido Ferroso-Férrico , Escherichia coli , Staphylococcus aureus , Metais Pesados/química , Ferro/análise , Água , Antibacterianos/química , Nanopartículas Magnéticas de Óxido de Ferro , Adsorção , Cinética , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
7.
Artigo em Inglês | MEDLINE | ID: mdl-37074141

RESUMO

A novel orange-coloured bacterium, designated strain SYSU D00508T, was isolated from a sandy soil sampled from the Kumtag Desert in China. Strain SYSU D00508T was aerobic, Gram-stain-negative, oxidase-positive, catalase-positive and non-motile. Growth occurred at 4-45°C (optimum 28-30°C), pH 6.0-9.0 (optimum pH 7.0-8.0) and with 0-2.5 % NaCl (w/v, optimum 0-1.0 %). The major polar lipids consisted of phosphatidylethanolamine (PE), unidentified aminolipids (AL1-3) and unidentified polar lipids (L1-5) were also detected. The major respiratory quinone was MK-7 and the major fatty acids (>10 %) were iso-C17 : 0 3-OH, iso-C15 : 0 and iso-C15 : 1 G. The genomic DNA G+C content was 42.6 %. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU D00508T belonged to the family Chitinophagaceae and showed 93.9 % (Segetibacter koreensis DSM18137T), 92.9 % (Segetibacter aerophilus NBRC 106135T), 93.0 % (Terrimonas soli JCM 32095T) and 92.8 % (Parasegetibacter terrae JCM 19942T) similarities. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain SYSU D00508T is proposed to represent a novel species of a new genus, named Aridibaculum aurantiacum gen. nov., sp. nov., within the family Chitinophagaceae. The type strain is SYSU D00508T (=KCTC 82286T=CGMCC 1.18648T=MCCC 1K05005T).


Assuntos
Ácidos Graxos , Microbiologia do Solo , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
8.
Animal ; 17(1): 100696, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36587589

RESUMO

Some studies have suggested that dietary medicinal plants or herbs may have a variety of biological functions such as anti-inflammatory, antiallergic, antifungal, antioxidative stress, and anticarcinogenic activities. The present study was undertaken to assess the incorporation of the extract of licorice supplementation on the growth performance, carcass yield, blood indices, and antioxidative capacity in broilers. Three hundred twenty unsexed one-day-old Ross 308 broiler chicks were allocated randomly into four groups. Chicks in each group were randomly subdivided into eight replicates of ten chicks. The first group received a basal diet and was considered a control. The respective groups received a basal diet supplemented with 1, 2, and 3 g licorice extract/kg diet. The obtained results indicated that supplementation of licorice extract to broiler chicks resulted in heavier BW and weight gain and a better feed conversion ratio during the experimental periods compared with the control group. However, feed consumption increased during the entire growing period. Supplementing the broiler's diet with licorice extract led to a higher value of erythrocytes, leukocytes, haemoglobin, plasma total protein, albumin, and antioxidant concentration and a low value in plasma cholesterol, triglycerides, uric acid, urea, and total cholesterol. It could be concluded that the dietary addition of licorice extracts 2 and 3 g licorice extract/kg diet improved broiler chicks' growth performance and physiological status.


Assuntos
Antioxidantes , Glycyrrhiza , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Suplementos Nutricionais , Dieta/veterinária , Glycyrrhiza/metabolismo , Colesterol/metabolismo
9.
Microbiol Spectr ; 10(4): e0025022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35852338

RESUMO

Surface-growing antibiotic-resistant pathogenic bacteria such as Escherichia coli and Staphylococcus aureus are emerging as a global health challenge due to dilemmas in clinical treatment. Furthermore, their pathogenesis, including increasingly serious antimicrobial resistance and biofilm formation, makes them challenging to treat by conventional therapy. Therefore, the development of novel antivirulence strategies will undoubtedly provide a path forward in combatting these resistant bacterial infections. In this regard, we developed novel biosurfactant-coated nanoparticles to combine the antiadhesive/antibiofilm properties of rhamnolipid (RHL)-coated Fe3O4 nanoparticles (NPs) with each of the p-coumaric acid (p-CoA) and gallic acid (GA) antimicrobial drugs by using the most available polymer common coatings (PVA) to expand the range of effective antibacterial drugs, as well as a mechanism for their synergistic effect via a simple method of preparation. Mechanistically, the average size of bare Fe3O4 NPs was ~15 nm, while RHL-coated Fe3O4@PVA@p-CoA/GA was about ~254 nm, with a drop in zeta potential from -18.7 mV to -34.3 mV, which helped increase stability. Our data show that RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs can remarkably interfere with bacterial growth and significantly inhibited biofilm formation to more than 50% via downregulating IcaABCD and CsgBAC operons, which are responsible for slime layer formation and curli fimbriae production in S. aureus and E. coli, respectively. The novelty regarding the activity of RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs reveals their potential effect as an alternative multitarget antivirulence candidate to minimize infection severity by inhibiting biofilm development. Therefore, they could be used in antibacterial coatings and wound dressings in the future. IMPORTANCE Antimicrobial resistance poses a great threat and challenge to humanity. Therefore, the search for alternative ways to target and eliminate microbes from plant, animal, and marine microorganisms is one of the world's concerns today. Furthermore, the extraordinary capacity of S. aureus and E. coli to resist standard antibacterial drugs is the dilemma of all currently used remedies. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have become widespread, leading to no remedies being able to treat these threatening pathogens. The most widely recognized serotypes that cause severe foodborne illness are E. coli O157:H7, O26:H11, and O78:H10, and they display increasing antimicrobial resistance rates. Therefore, there is an urgent need for an effective therapy that has dual action to inhibit biofilm formation and decrease bacterial growth. In this study, the synthesized RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs have interesting properties, making them excellent candidates for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm-associated IcaABCD and CsgBAC gene loci.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Escherichia coli , Glicolipídeos , Nanopartículas Magnéticas de Óxido de Ferro , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Sorogrupo , Staphylococcus aureus
10.
PLoS One ; 17(3): e0264035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255107

RESUMO

Alternatives of conventional antibiotics have become an urgent need to control drug-resistant bacteria. Therefore, search for new antibacterial agents has become a trend in several microbiological and pharmaceutical scientific works. Insects, one of the most successful and evolved species on earth is known to be an effective natural source of several medically useful chemicals including antibacterial agents. There is considerable evidence of using wasp venom against medical ailments in several parts of the world. In this work venom from Polistes wattii Cameron, 1900 collected from Eastern Province, Saudi Arabia was evaluated for its antibacterial activities. Such activity was tested against four pathogenic bacteria: two-gram positive Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB 017(1) ATCC 25175) and two gram-negative (Salmonella typhimurium NCTC 12023 ATCC 14028 and Enterobacter cloacae (RCMB 001(1) ATCC 23355). Also, chemical characterization of wasp venom was done using HPLC and two isolated peptides were sequenced. The result indicates the potent anti-microbial effect of the venom against the four tested bacteria. The most sensitive bacteria were Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB 017(1) ATCC 25175). The sequence of the two purified peptides indicates that they belong to mastoparan. The study results may pave way to use this wasp venom in future antibiotics especially in controlling skin infection by Staphylococcus aureus.


Assuntos
Infecções Estafilocócicas , Vespas , Animais , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Arábia Saudita , Staphylococcus aureus , Venenos de Vespas/química , Venenos de Vespas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-35166654

RESUMO

A novel Gram-stain-negative, aerobic, oxidase-positive, catalase-positive, non-motile, short rod-shaped, red-pigmented strain, designated as SYSU D00434T, was isolated from a dry sandy soil sample collected from the Gurbantunggut desert in Xinjiang, north-west PR China. Strain SYSU D00434T was found to grow at 4-37 °C (optimum, 28-30 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-1.5 % (w/v) NaCl (optimum, 0-0.5 %). The predominant respiratory quinone was MK-7 and the major fatty acids (>10 %) were C16 : 1 ω5c, iso-C15 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 4 (anteiso-C17 : 1 B and/or iso-C17 : 1 I). The polar lipids consisted of phosphatidylethanolamine, two unidentified polar lipids, two unidentified aminolipids, two unidentified phospholipids and two unidentified glycolipids. The genomic DNA G+C content of strain SYSU D00434T was 50.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SYSU D00434T belonged to the family Hymenobacteraceae, and shared a sequence similarity of less than 94.6 % to all validly named taxa. Based on the phenotypic, phylogenetic and chemotaxonomic properties, strain D00434T is proposed to represent a new species of a new genus, named Sabulibacter ruber gen. nov., sp. nov., within the family Hymenobacteraceae. The type strain is SYSU D00434T (=CGMCC 1.18624T=KCTC 82276T=MCCC 1K04975T).


Assuntos
Bacteroidetes/classificação , Ácidos Graxos , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Clima Desértico , Ácidos Graxos/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-35060847

RESUMO

Two bacterial strains, designated as SYSU D00720T and SYSU D00722, were isolated from a desert sandy soil sample collected from Gurbantunggut Desert in Xinjiang, north-west China. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped, oxidase-positive and catalase-negative. Colonies were circular, opaque, convex, smooth, orange on Reasoner's 2A (R2A) agar. The isolates were found to grow at 4-45 °C (optimum, 28-30 °C), at pH 6.0-7.0 (optimum, 7.0) and with 0-1.5 % (w/v) NaCl (optimum, 0%). Growth was observed on R2A agar, Luria-Bertani agar and nutrient agar, but not on trypticase soy agar. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid, two unidentified aminolipids, one unidentified glycolipid, one unidentified aminoglycolipid, one unidentified aminophospholipid, one unidentified phospholipid and two unidentified lipids. The main fatty acids (>10%) were C17 : 1 ω6c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The major respiratory quinone was ubiquinone-10 and the major polyamine was sym-homospermidine. The genomic DNA G+C content was 66.0 mol%. Strains SYSU D00720T and SYSU D00722 were nearly identical with a 16S rRNA gene sequence similarity of 99.6 %, and 100.0 % average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values. Phylogenetic analyses clearly demonstrated that these two strains belonged to the same species of the genus Sphingomonas, and had highest sequence similarity to Sphingomonas lutea KCTC 23642T (97.3 %). The ANI, AAI and dDDH values of strains SYSU D00720T and SYSU D00722 to S. lutea KCTC 23642T were both 73.2, 69.9 and 19.2 %, respectively. Based on phylogenetic, phenotypic and chemotaxonomic distinctiveness, strains SYSU D00720T and SYSU D00722 represent a novel species of the genus Sphingomonas, for which the name Sphingomonas arenae sp. nov. is proposed. The type strain is SYSU D00720T (=MCCC 1K05154T=NBRC 115061T).


Assuntos
Filogenia , Microbiologia do Solo , Sphingomonas , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Clima Desértico , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonas/classificação , Sphingomonas/isolamento & purificação
13.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680736

RESUMO

BACKGROUND: The Red Sea sponges have been endorsed as a plentiful source of bioactive compounds with promising anti-cancer and anti-inflammatory activities; therefore, exploring their potential as a source of anti-cancer metabolites has stimulated a growing research interest. PURPOSE: To investigate the anti-cancer and anti-inflammatory potential of the Red Sea sponges, in their bulk and silver nanostructure. Metabolomics analysis of the selected sponge followed by molecular docking studies, will be conducted to explore and predict the secondary metabolites that might provide its capability of inhibiting cancer. MATERIALS AND METHODS: We prepared a chloroform extract (CE) and ethyl acetate extract (EE) of the Red Sea sponge Phyllospongia lamellosa synthesized silver nanoparticles. The prepared silver nanoparticles were characterized through UV-vis spectrophotometric, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses. Testing for their anti-cancer activities was performed against MCF-7, MDB-231, and MCF-10A cells. Anti-inflammatory activity against COX-1 and 2 was assessed. Furthermore, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis and molecular docking were also applied.

14.
Microorganisms ; 9(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499315

RESUMO

Deserts cover a significant proportion of the Earth's surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.

15.
Curr Pharm Des ; 27(4): 505-512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33327903

RESUMO

Flavonoids represent a large diverse group of natural products that are used as a traditional medicine against various infectious diseases. They possess many biological activities including antimicrobial, antioxidant, anti-inflammatory, anti-cancer and anti-diabetic activities. Commercially, flavonoids are mainly obtained from plants, however, several challenges are faced during their extraction. Microorganisms have been known as natural sources of a wide range of bioactive compounds including flavonoids. Actinobacteria are the most prolific group of microorganisms for the production of bioactive secondary metabolites, thus facilitating the production of flavonoids. The screening programs for bioactive compounds revealed the potential application of actinobacteria to produce flavonoids with interesting biological activities, especially anticancer activities. Since marine actinobacteria are recognized as a potential source of novel anticancer agents, they are highly expected to be potential producers of anticancer flavonoids with unusual structures and properties. In this review, we highlight the production of flavonoids by actinobacteria through classical fermentation, engineering of plant biosynthetic genes in a recombinant actinobacterium and the de novo biosynthesis approach. Through these approaches, we can control and improve the production of interesting flavonoids or their derivatives for the treatment of cancer.


Assuntos
Actinobacteria , Antineoplásicos , Produtos Biológicos , Antineoplásicos/farmacologia , Bactérias , Produtos Biológicos/farmacologia , Flavonoides/farmacologia , Humanos
16.
J Hazard Mater ; 401: 123849, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113748

RESUMO

So far, the phytotoxic hazards of nano-sized mercuric oxide (HgO-NPs) are not investigated. Herein, the phytotoxicity of fully characterized HgO-NPs (100 mg/kg soil), prepared by coprecipitation method, on maize grown under ambient (aCO2, 410 ppm) and elevated CO2 (eCO2, 620 ppm) was investigated. Regardless of CO2 concentration, HgO-NPs treatment increased Hg levels in maize organs. HgO-NPs induced severe oxidative stress in aCO2 grown plants as indicated by reduced growth and photosynthesis and accumulation of reactive oxygen species (ROS), through photorespiration and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities, and lipid and protein oxidation products. Although HgO-NPs increased molecular (polyphenols, flavonoids, tocopherols) and enzymatic (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase) antioxidants in shoots of aCO2 plants, but this failed to fight the eruption of increased ROS. On contrary, eCO2 treatment mitigated the HgO-NPs impact by promoting photosynthesis and reducing the Hg-induced ROS production. Moreover, eCO2 promoted ROS detoxification via molecular antioxidants overproduction, enhanced superoxide dismutase, catalase and peroxidases activities, and modulation of reduced ascorbate/oxidized ascorbate and reduced glutathione/oxidized glutathione homeostasis. The combined HgO-NPs + eCO2 treatment also enhanced the glutathione-S-transferase activity. This study suggests that HgO-NPs cause severe phytotoxic hazards and this effect will be less detrimental under future CO2 climate.


Assuntos
Nanopartículas , Zea mays , Antioxidantes , Ascorbato Peroxidases/metabolismo , Dióxido de Carbono/toxicidade , Catalase/metabolismo , Compostos de Mercúrio , Nanopartículas/toxicidade , Estresse Oxidativo , Óxidos , Superóxido Dismutase/metabolismo , Zea mays/metabolismo
17.
Sci Rep ; 10(1): 15076, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934293

RESUMO

It is well known that the quality and quantity of bioactive metabolites in plants and microorganisms are affected by environmental factors. We applied heat stress as a promising approach to stimulate the production of antioxidants in four heat-tolerant bacterial strains (HT1 to HT4) isolated from Aushazia Lake, Qassim Region, Saudi Arabia. The phylogenetic analysis of the 16S rRNA sequences indicated that HT1, HT3 and HT4 belong to genus Bacillus. While HT2 is closely related to Pseudooceanicola marinus with 96.78% similarity. Heat stress differentially induced oxidative damage i.e., high lipid peroxidation, lipoxygenase and xanthine oxidase levels in HT strains. Subsequently, heat stress induced the levels of flavonoids and polyphenols in all strains and glutathione (GSH) in HT2. Heat stress also improved the antioxidant enzyme activities, namely, CAT, SOD and POX in all strains and thioredoxin activity in HT3 and HT4. While GSH cycle (GSH level and GPX, GR, Grx and GST activities) was only detectable and enhanced by heat stress in HT2. The hierarchical cluster analysis of the antioxidants also supported the strain-specific responses. In conclusion, heat stress is a promising approach to enhance antioxidant production in bacteria with potential applications in food quality improvement and health promotion.


Assuntos
Antioxidantes/metabolismo , Bacillus/genética , Resposta ao Choque Térmico/genética , Rhodobacteraceae/genética , Catalase/genética , Glutationa/genética , Glutationa Peroxidase/genética , Transtornos de Estresse por Calor/genética , Peroxidação de Lipídeos/genética , Oxirredução , Estresse Oxidativo/genética , Filogenia , RNA Ribossômico 16S/genética , Arábia Saudita , Superóxido Dismutase/genética
18.
Sci Rep ; 10(1): 12762, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728102

RESUMO

Pleosporales species are important plant pathogens, saprobes, and endophytes on a wide range of economically important plant hosts. The classification of Pleosporales has undergone various modifications in recent years due to the addition of many families described from multiple habitats with a high level of morphological deviation. Numerous asexual genera have been described in Pleosporales that can be either hyphomyceteous or coelomycetous. Phoma- or coniothyrium-like species are common and have been revealed as polyphyletic in the order Pleosporales and linked with several sexual genera. A total of 31 pleosporalean strains were isolated in different regions of Taiwan between 2017 and 2018 from the leaves of Camellia sinensis plants with symptoms of leaf spot disease. These strains were evaluated morphologically and genotypically using multi-locus sequence analyses of the ITS, LSU, SSU, rpb2, tef1 and tub2 genes. The results demonstrated the affiliation of these strains with the various families in Pleosporales and revealed the presence of one new genus (Neoshiraia) and eight new species (Alloconiothyrium camelliae, Amorocoelophoma camelliae, Leucaenicola camelliae, L. taiwanensis, Neoshiraia camelliae, N. taiwanensis, Paraconiothyrium camelliae and Paraphaeosphaeria camelliae). Furthermore, to the best of our understanding, Didymella segeticola, Ectophoma pomi and Roussoella mexican were reported for the first time from C. sinensis in Taiwan.


Assuntos
Ascomicetos/classificação , Biodiversidade , Camellia sinensis/microbiologia , Teorema de Bayes , DNA Intergênico , Ecossistema , Endófitos , Marcadores Genéticos , Genótipo , Funções Verossimilhança , Modelos Genéticos , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Especificidade da Espécie , Taiwan
19.
Antioxidants (Basel) ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397156

RESUMO

Background: In this era, worldwide interest has been directed towards using natural antioxidants to guard against drug side effects. Saussurea lappa is a famous medicinal plant with many biologically active compounds. Triamcinolone acetonide (TA) is an extensively used glucocorticoid. Hence, this study explored, for the first time, the possible beneficial effects of S. lappa ethanolic extract on TA-induced oxidative damage in the lung and spleen of rats. Methods: Five experimental groups were used: control group, S. lappa-treated group (600 mg/kg/day, orally), TA-treated group (40 mg/kg/twice/week I/P), S. lappa + TA co-treated group, and S. lappa/TA prophylactic group. Results: TA exposure significantly induced leukocytosis and neutrophilia. In addition, TA significantly reduced the levels of C-reactive protein, interleukin-12, tumor necrosis factor α, and immunoglobulins. Lung Caspase-3 overexpression and splenic CD8+ downregulation were also noted in the TA group. TA treatment significantly increased malondialdehyde concentration but reduced superoxide dismutase and glutathione peroxidase activities. S. lappa counteracted the TA oxidative and apoptotic effects. The best results were recorded in the prophylactic group. Conclusions: S. lappa has a remarkable protective effect via its anti-inflammatory, anti-apoptotic, and antioxidant capacity. Thus, it could be a candidate as a natural antioxidant to face glucocorticoid's harmful side effects.

20.
J Food Biochem ; 44(6): e13229, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250478

RESUMO

Balanites aegyptiaca L. is a multipurpose tree distributed in Africa and Middle East. Several parts of B. aegyptiaca have been suggested to have medicinal uses. So far the effect of ecological origin on the nutritional values and biological activities of B. aegyptiaca genotypes is rarely investigated. Further, metabolic profiling and assessment of the functional food value of B. aegyptiaca leaves are far from complete. In this study, biological activities and profiling of primary and secondary metabolites were investigated in the leaves of five B. aegyptiaca provenances collected from Egypt, Sudan, Saudi Arabia, and Yemen. Interestingly, all provenances showed notable antidiabetic, antioxidant, antiprotozoal, antibacterial, antifungal, and anticancer activities. Hierarchical clustering analysis revealed significant variability in the concentrations of individual sugars, organic acids, amino acids, fatty acids, vitamins, phenolics, and minerals among the provenances and these variations were provenance dependent. Medina provenance showed the heights diphenylpicrylhydrazyl (DPPH) scavenging and antifungal activities and was the most powerful against embryonic kidney adenocarcinoma and urinary bladder carcinoma cells. The highest inhibition against Escherichia coli and colon carcinoma cells was observed by Sudan and Cairo provenances. El-Kharga and Yemen provenances showed the greatest activity against Trypanosoma cruzi and hepatocellular and urinary bladder carcinoma. Therefore, leaves of B. aegyptiaca possess good nutritive and biological capacities and might have potential applications in the food and medical industries. However, the strength of such activities is significantly affected by the provenance. PRACTICAL APPLICATIONS: According to the national Research Council (NRC) of United States, Balanites aegyptiaca L. is recognized among the 24 priority lost crops of Africa. B. aegyptiaca leaves contain considerable amounts of primary metabolites (e.g., sugars, EAAs, USFAs) and secondary (e.g., phenolic acids and flavonoids) metabolites, vitamins, and macro and microelements. The obvious existence of these nutritionally and medicinally related compounds supports the functional food value of B. aegyptiaca leaves. Moreover, the present results revealed that B. aegyptiaca is not only a foliage dietary plant, but also could be considered as a valuable source for neutraceuticals, which support its pharmacological value. So far, this is the first report to explore, in detail, the functional food value of B. aegyptiaca leaves by presenting a clear image about its metabolic profiling and biological activities, and how the provenance factor could affect these values.


Assuntos
Balanites , Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais , Sudão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA