Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 5(14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28754781

RESUMO

Estrogens have an important role in regulating detrusor smooth muscle (DSM) function. However, the underlying molecular and cellular mechanisms by which estrogens control human DSM excitability and contractility are not well known. Here, we used human DSM specimens from open bladder surgeries on 27 patients to elucidate the mechanism by which 17ß-estradiol regulates large conductance voltage- and Ca2+-activated K+ (BK) channels, the most prominent K+ channels in human DSM We employed single BK channel recordings on inside-out excised membrane patches, perforated whole-cell patch-clamp on freshly isolated DSM cells, and isometric tension recordings on DSM-isolated strips to investigate the mechanism by which 17ß-estradiol activates BK channels. 17ß-Estradiol (100 nmol/L) rapidly increased depolarization-induced whole-cell K+ currents in DSM cells. The 17ß-estradiol stimulatory effects on whole-cell BK currents were completely abolished by the selective BK channel inhibitor paxilline (1 µmol/L), clearly indicating that 17ß-estradiol specifically activates BK channels. 17ß-Estradiol also increased the frequency of ryanodine receptor-mediated transient BK currents. Single BK channel recordings showed that 17ß-estradiol (100 nmol/L) significantly increased the BK channel open probability of inside-out excised membrane patches, revealing that 17ß-estradiol activates BK channels directly. 17ß-Estradiol reduced spontaneous phasic contractions of human DSM-isolated strips in a concentration-dependent manner (100 nmol/L-1 µmol/L), and this effect was blocked by paxilline (1 µmol/L). 17ß-Estradiol (100 nmol/L) also reduced nerve-evoked contractions of human DSM-isolated strips. Collectively, our results reveal that 17ß-estradiol plays a critical role in regulating human DSM function through a direct nongenomic activation of BK channels.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Miócitos de Músculo Liso/fisiologia , Potenciais de Ação , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Contração Muscular , Miócitos de Músculo Liso/efeitos dos fármacos , Bexiga Urinária/citologia
2.
PLoS One ; 10(11): e0141950, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536038

RESUMO

Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens. This study provides an electrophysiological investigation into the role of UBSM BK channels as direct targets for 17ß-estradiol, the principle estrogen in human circulation. Single BK channel recordings on inside-out excised membrane patches and perforated whole cell patch-clamp were applied in combination with the BK channel selective inhibitor paxilline to elucidate the mechanism of regulation of BK channel activity by 17ß-estradiol in freshly-isolated guinea pig UBSM cells. 17ß-Estradiol (100 nM) significantly increased the amplitude of depolarization-induced whole cell steady-state BK currents and the frequency of spontaneous transient BK currents in freshly-isolated UBSM cells. The increase in whole cell BK currents by 17ß-estradiol was eliminated upon blocking BK channels with paxilline. 17ß-Estradiol (100 nM) significantly increased (~3-fold) the single BK channel open probability, indicating direct 17ß-estradiol-BK channel interactions. 17ß-Estradiol (100 nM) caused a significant hyperpolarization of the membrane potential of UBSM cells, and this hyperpolarization was reversed by blocking the BK channels with paxilline. 17ß-Estradiol (100 nM) had no effects on L-type voltage-gated Ca2+ channel currents recorded under perforated patch-clamp conditions. This study reveals a new regulatory mechanism in the urinary bladder whereby BK channels are directly activated by 17ß-estradiol to reduce UBSM cell excitability.


Assuntos
Estradiol/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Músculo Liso/metabolismo , Bexiga Urinária/citologia , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Cobaias , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia
3.
Pflugers Arch ; 467(4): 665-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24867682

RESUMO

Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9 ± 1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca(2+) from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1 channels were examined under conditions of removing the major cellular Ca(2+) sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca(2+), thus increasing the excitability in human DSM cells.


Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Muscarínicos/metabolismo , Bexiga Urinária/metabolismo , Potenciais de Ação , Idoso , Cálcio/metabolismo , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Bexiga Urinária/citologia
4.
PLoS One ; 8(7): e68052, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861849

RESUMO

Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO), which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM) large conductance Ca(2+)-activated K(+) (BK) channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR), perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs) in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.


Assuntos
Regulação da Expressão Gênica , Estudos de Associação Genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Bexiga Urinária Hiperativa/genética , Bexiga Urinária Hiperativa/metabolismo , Idoso , Feminino , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Peptídeos/farmacologia , Bexiga Urinária Hiperativa/fisiopatologia
5.
Am J Physiol Cell Physiol ; 302(11): C1599-608, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22422395

RESUMO

The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.


Assuntos
Músculo Liso/fisiologia , Canais de Potássio Shab/metabolismo , Bexiga Urinária/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estimulação Elétrica , Feminino , Humanos , Masculino , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Técnicas de Patch-Clamp/métodos , Peptídeos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Canais de Potássio Shab/antagonistas & inibidores , Canais de Potássio Shab/biossíntese , Venenos de Aranha , Bexiga Urinária/metabolismo , Adulto Jovem
6.
Am J Physiol Cell Physiol ; 302(11): C1632-41, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22422396

RESUMO

Overactive bladder syndrome is frequently associated with increased detrusor smooth muscle (DSM) contractility. We tested the hypothesis that pharmacological activation of the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel with NS-1619, a selective BK channel opener, reduces the excitability and contractility of human DSM. We used the amphotericin-perforated whole cell patch-clamp technique on freshly isolated human DSM cells, live-cell Ca(2+) imaging, and isometric DSM tension recordings of human DSM strips obtained from open bladder surgeries. NS-1619 (30 µM) significantly increased the amplitude of the voltage step-induced whole cell BK currents, and this effect was abolished by pretreatment with 200 nM iberiotoxin (IBTX), a selective BK channel inhibitor. In current-clamp mode, NS-1619 (30 µM) significantly hyperpolarized the resting membrane potential, and the hyperpolarization was reversed by IBTX (200 nM). NS-1619 (30 µM) significantly decreased the intracellular Ca(2+) level in isolated human DSM cells. BK channel activation with NS-1619 (30 µM) significantly inhibited the amplitude, muscle force, frequency, duration, and tone of the spontaneous phasic and pharmacologically induced DSM contractions from human DSM isolated strips. IBTX (200 nM) suppressed the inhibitory effects of NS-1619 on spontaneous contractions. The amplitude of electrical field stimulation (0.5-50 Hz)-induced contractions was significantly reduced by NS-1619 (30 µM). Our data suggest that pharmacological activation of BK channels could represent a novel treatment option to control bladder dysfunction in humans.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/fisiologia , Contração Muscular/fisiologia , Bexiga Urinária Hiperativa/metabolismo , Idoso , Idoso de 80 Anos ou mais , Benzimidazóis/farmacologia , Cálcio/fisiologia , Feminino , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/patologia
7.
Am J Physiol Cell Physiol ; 302(2): C360-72, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21998137

RESUMO

Voltage-gated K(+) (K(V)) channels are implicated in detrusor smooth muscle (DSM) function. However, little is known about the functional role of the heterotetrameric K(V) channels in DSM. In this report, we provide molecular, electrophysiological, and functional evidence for the presence of K(V)2.1 and electrically silent K(V) channel subunits in guinea pig DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of the homotetrameric K(V)2.1, K(V)2.2, and K(V)4.2 as well as the heterotetrameric K(V)2.1/6.3 and K(V)2.1/9.3 channels, was used to examine the role of these K(V) channels in DSM function. RT-PCR indicated mRNA expression of K(V)2.1, K(V)6.2-6.3, K(V)8.2, and K(V)9.1-9.3 subunits in isolated DSM cells. K(V)2.1 protein expression was confirmed by Western blot and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the K(V) current in freshly isolated DSM cells. ScTx1 (100 nM) did not significantly change the steady-state activation and inactivation curves for K(V) current. However, ScTx1 (100 nM) decreased the activation time-constant of the K(V) current at positive voltages. Although our patch-clamp data could not exclude the presence of the homotetrameric K(V)2.1 channels, the biophysical characteristics of the ScTx1-sensitive current were consistent with the presence of heterotetrameric K(V)2.1/silent K(V) channels. Current-clamp recordings showed that ScTx1 (100 nM) did not change the DSM cell resting membrane potential. ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude, muscle force, and muscle tone as well as the amplitude of the electrical field stimulation-induced contractions of isolated DSM strips. Collectively, our data revealed that K(V)2.1-containing channels are important physiological regulators of guinea pig DSM excitability and contractility.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Subunidades Proteicas/metabolismo , Canais de Potássio Shab/metabolismo , Bexiga Urinária/anatomia & histologia , Animais , Carbacol/farmacologia , Cardiotônicos/farmacologia , Feminino , Cobaias , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/metabolismo , Cloreto de Potássio/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Canais de Potássio Shab/antagonistas & inibidores , Canais de Potássio Shab/química , Canais de Potássio Shab/genética , Venenos de Aranha/metabolismo
8.
Am J Physiol Cell Physiol ; 301(4): C903-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697543

RESUMO

The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is expressed in many smooth muscle types, but its role in human detrusor smooth muscle (DSM) is unclear. With a multidisciplinary approach spanning channel molecules, single-channel activity, freshly isolated human DSM cells, intact DSM preparations, and the BK channel specific inhibitor iberiotoxin, we elucidated human DSM BK channel function and regulation. Native human DSM tissues were obtained during open surgeries from patients with no preoperative history of overactive bladder. RT-PCR experiments on single human DSM cells showed mRNA expression of BK channel α-, ß(1)-, and ß(4)-subunits. Western blot and immunocytochemistry confirmed BK channel α, ß(1), and ß(4) protein expression. Native human BK channel properties were described using the perforated whole cell configuration of the patch-clamp technique. In freshly isolated human DSM cells, BK channel blockade with iberiotoxin inhibited a significant portion of the total voltage step-induced whole cell K(+) current. From single BK channel recordings, human BK channel conductance was calculated to be 136 pS. Voltage-dependent iberiotoxin- and ryanodine-sensitive transient BK currents were identified in human DSM cells. In current-clamp mode, iberiotoxin inhibited the hyperpolarizing membrane potential transients and depolarized the cell resting membrane potential. Isometric DSM tension recordings revealed that BK channels principally control the contractions of isolated human DSM strips. Collectively, our results indicate that BK channels are fundamental regulators of DSM excitability and contractility and may represent new targets for pharmacological or genetic control of urinary bladder function in humans.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Peptídeos/farmacologia , Subunidades Proteicas , Técnicas de Cultura de Tecidos , Toxinas Biológicas/farmacologia
9.
Am J Physiol Cell Physiol ; 295(5): C1344-53, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18799656

RESUMO

We investigated the role of large-conductance Ca(2+)-activated K(+) (BK) channels in beta3-adrenoceptor (beta3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific beta3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific beta3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344. Iberiotoxin, a specific BK channel inhibitor, shifts the BRL 37344 concentration response curves for contraction amplitude, net muscle force, and tone to the right. Freshly dispersed UBSM cells and the perforated mode of the patch-clamp technique were used to determine further the role of beta3-AR stimulation by BRL 37344 on BK channel activity. BRL 37344 increased spontaneous, transient, outward BK current (STOC) frequency by 46.0 +/- 20.1%. In whole cell mode at a holding potential of V(h) = 0 mV, the single BK channel amplitude was 5.17 +/- 0.28 pA, whereas in the presence of BRL 37344, it was 5.55 +/- 0.41 pA. The BK channel open probability was also unchanged. In the presence of ryanodine and nifedipine, the current-voltage relationship in response to depolarization steps in the presence and absence of BRL 37344 was identical. In current-clamp mode, BRL 37344 caused membrane potential hyperpolarization from -26.1 +/- 2.1 mV (control) to -29.0 +/- 2.2 mV. The BRL 37344-induced hyperpolarization was eliminated by application of iberiotoxin, tetraethylammonium or ryanodine. The data indicate that stimulation of beta3-AR relaxes rat UBSM by increasing the BK channel STOC frequency, which causes membrane hyperpolarization and thus relaxation.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/farmacologia , Etanolaminas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Potenciais da Membrana , Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 3/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Bexiga Urinária/metabolismo
10.
Am J Physiol Renal Physiol ; 295(4): F1149-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18701628

RESUMO

In urinary bladder smooth muscle (UBSM), stimulation of beta-adrenergic receptors (beta-ARs) leads to activation of the large-conductance Ca2+-activated K+ (BK) channel currents (Petkov GV and Nelson MT. Am J Physiol Cell Physiol 288: C1255-C1263, 2005). In this study we tested the hypothesis that the BK channel mediates UBSM relaxation in response to beta-AR stimulation using the highly specific BK channel inhibitor iberiotoxin (IBTX) and a BK channel knockout (BK-KO) mouse model in which the gene for the pore-forming subunit was deleted. UBSM strips isolated from wild-type (WT) and BK-KO mice were stimulated with 20 mM K+ or 1 microM carbachol to induce phasic and tonic contractions. BK-KO and WT UBSM strips pretreated with IBTX had increased overall contractility, and UBSM BK-KO cells were depolarized with approximately 12 mV. Isoproterenol, a nonspecific beta-AR agonist, and forskolin, an adenylate cyclase activator, decreased phasic and tonic contractions of WT UBSM strips in a concentration-dependent manner. In the presence of IBTX, the concentration-response curves to isoproterenol and forskolin were shifted to the right in WT UBSM strips. Isoproterenol- and forskolin-mediated relaxations were enhanced in BK-KO UBSM strips, and a leftward shift in the concentration-response curves was observed. The leftward shift was eliminated upon PKA inhibition with H-89, suggesting upregulation of the beta-AR-cAMP pathway in BK-KO mice. These results indicate that the BK channel is a key modulator in beta-AR-mediated relaxation of UBSM and further suggest that alterations in BK channel expression or function could contribute to some pathophysiological conditions such as overactive bladder and urinary incontinence.


Assuntos
Relaxamento Muscular/fisiologia , Músculo Liso/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Bexiga Urinária/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Peptídeos/farmacologia , Receptores Adrenérgicos beta/metabolismo , Sinaptotagminas , Incontinência Urinária/fisiopatologia
11.
Vascul Pharmacol ; 47(1): 31-40, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17481960

RESUMO

Ghrelin, a 28-amino acid peptide, known to exist in both acylated and des-acylated varieties, was identified as the first endogenous ligand of growth hormone secretagogue receptor in 1999. Various arteries are known to express ghrelin receptors, but the direct action of ghrelin on blood vessels has been unclear. In the present study we show that ghrelin concentration-dependently potentiates endothelin-1 (ET-1) induced tension development of guinea-pig renal artery, as measured using a wire-type isometric myography of vascular segments. In vascular smooth muscle cells (SMC) ghrelin caused activation of potassium outward currents via phospholipase C (PLC)-->inositol-1,4,5-trisphosphate (IP3) and PLC-->protein kinase C (PKC) signalling cascade, resulting in hyperpolarizaton of the cell membrane. On a tissue level ghrelin by itself had no effect on isometric tone, but augmented ET-1 induced contraction by a mechanism, involving PLC, Rho-kinase and intracellular IP3 -sensitive Ca2+ release, and not nucleotide-sensitive protein kinases or PKC. Together with our previous findings the data in this study suggest that ghrelin exerts its contractile activity on guinea-pig renal artery by facilitation of ET-1 triggered intracellular signalling in SMC, and/or by stimulating the release of a yet unknown contractile mediator from endothelium.


Assuntos
Hormônios Peptídicos/farmacologia , Artéria Renal/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Endotelina-1/farmacologia , Grelina , Cobaias , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Artéria Renal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tetrodotoxina/farmacologia
12.
J Muscle Res Cell Motil ; 25(4-5): 411-21, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15548871

RESUMO

Hemin (10 microM) and carbon monoxide (CO) increased iberiotoxin-blockable IKCa in portal vein smooth muscle cells. CO-induced IKCa activation was abolished by 10 microM ODQ, 10 microM cyclopiazonic acid and 1 microM KT5823. The hemin-induced effect on IKCa was abolished by pretreatment with Sn-protoporphyrin IX, a heme oxygenase inhibitor and Fe2+ chelator but was insensitive to inhibitors of soluble guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG). There was no effect of hemin on IKCa in the presence of 3 microM dithiotreitol into the bath or 3 mM glutathione into the pipette solution. Superoxide dismutase (1000 U/ml) or catalase (3000 U/ml) added into the pipette solution also abolished the effect of hemin on IKCa in this tissue. Additionally, 10 microM hemin could not influence IKCa in Ca2+-free external solution or in the presence of 30 microM SKF 95356. It was concluded that CO increases IKCa via its "conventional" signaling pathway, which involves soluble GC and PKG activation and subsequent stimulation of sarcoplasmic reticulum Ca2+ pump activity resulting in Ca2+-dependent activation of IKCa due to the accumulation of Ca2+ into the space near the plasma membrane. On the other hand, internally produced CO could not yield the same IKCa increase, while Fe2+ derived from heme oxygenase 2-dependent degradation of hemin in portal vein smooth muscle cells gives rise to reactive oxygen species namely hydroxyl and superoxide radicals. Both radicals are responsible for the SKF 95356-sensitive non-selective cation channel activation, the Ca2+ influx and the subsequent increase of Ca2+ concentration near the plasma membrane that augments the KCa channel activity.


Assuntos
Monóxido de Carbono/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Ativação do Canal Iônico/fisiologia , Miócitos de Músculo Liso/fisiologia , Canais de Potássio Cálcio-Ativados/fisiologia , Animais , Cálcio/metabolismo , Catalase/antagonistas & inibidores , Catalase/metabolismo , Membrana Celular/enzimologia , Membrana Celular/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Cobaias , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Hemina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Ferro/metabolismo , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Técnicas de Patch-Clamp , Veia Porta/efeitos dos fármacos , Veia Porta/enzimologia , Veia Porta/fisiologia , Protoporfirinas/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA