Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38539907

RESUMO

Shortening the aging duration and enhancing the functional components of garlic present significant technical challenges that need to be addressed. Thus, this study aimed to evaluate the potential role of pulsed electric field (PEF) treatment, a novel nonthermal food processing method, in promoting and enhancing the functional attributes of aged garlic. Our results showed that 2-4 kV/cm PEF pretreatment increased S-allyl cysteine (SAC), total polyphenol (TPC), and flavonoid contents (TFC) compared with un-pretreated garlic during aging. The browning and texture-softening were also significantly improved during processing time, though the latter showed no significant difference from the eighth day to the end of the aging process. The principal component analysis results showed that PEF positively affects the SAC and TFC formations without adverse effects. Among the PEF pretreatments, 3 kV/cm is the most effective in enhancing functional component production compared with the other PEF pretreatments. Therefore, PEF pretreatment is a time-saving process that promotes and enhances the functionality of aged garlic.

2.
Int J Biol Macromol ; 264(Pt 1): 130504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442830

RESUMO

Long non-coding RNA FENDRR possesses both anti-fibrotic and anti-cancer properties, but its significance in the development of premalignant oral submucous fibrosis (OSF) remains unclear. Here, we showed that FENDRR was downregulated in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs), and overexpression of FENDRR mitigated various myofibroblasts hallmarks, and vice versa. In the course of investigating the mechanism underlying the implication of FENDRR in myofibroblast transdifferentiation, we found that FENDRR can directly bind to miR-214 and exhibit its suppressive effect on myofibroblast activation via titrating miR-214. Moreover, we showed that mitofusin 2 (MFN2), a protein that is crucial to the fusion of mitochondria, was a direct target of miR-214. Our data suggested that FENDRR was positively correlated with MFN2 and MFN2 was required for the inhibitory property of FENDRR pertaining to myofibroblast phenotypes. Additionally, our results showed that the FENDRR/miR-214 axis participated in the arecoline-induced reactive oxygen species (ROS) accumulation and myofibroblast transdifferentiation. Building on these results, we concluded that the aberrant downregulation of FENDRR in OSF may be associated with chronic exposure to arecoline, leading to upregulation of ROS and myofibroblast activation via the miR-214-mediated suppression of MFN2.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Miofibroblastos/metabolismo , Arecolina/efeitos adversos , Arecolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Fibroblastos , MicroRNAs/genética , MicroRNAs/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Mol Nutr Food Res ; 68(5): e2300667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282089

RESUMO

SCOPE: Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS: An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1ß by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS: The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.


Assuntos
Ganoderma , Macrófagos Alveolares , NF-kappa B , Camundongos , Animais , Macrófagos Alveolares/química , Macrófagos Alveolares/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Material Particulado/toxicidade , Material Particulado/análise , Anti-Inflamatórios/farmacologia , Pulmão/química , Pulmão/metabolismo
4.
FEBS Open Bio ; 14(3): 358-379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151750

RESUMO

Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.


Assuntos
Doenças Cardiovasculares , Metilaminas , Humanos , Resveratrol/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Fatores de Risco , Dieta , Fatores de Risco de Doenças Cardíacas
5.
Int J Biol Macromol ; 250: 126267, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567526

RESUMO

Repeated-batch fermentation with fungal mycelia immobilized in plastic composite support (PCS) eliminates the lag phase during fermentation and improves metabolite productivity. The strategy is implemented herein, and a novel modified PCS is developed to enhance exopolysaccharide (EPS) production from the medicinal fungus Cordyceps militaris. A modified PCS (SYE + PCS) was made by compositing polypropylene (PP) with a nutrient mixture containing soybean hull, peptone, yeast extract, and minerals (SYE+). The use of SYE + PCS has consistent cell productivity throughout the multiple fermentation cycles, which resulted in a more higher cell productivity after second batch compared to unmodified PCS. The cell grown on SYE + PCS also generates a higher yield of EPS (3.36, 6.93, and 5.72 g/L in the first, second, and third fermentation cycles, respectively) up to three-fold higher than the cell immobilized on unmodified PCS. It is also worth noting that the EPS from mycelium grown on SYE + PCS contains up to 2.3-fold higher cordycepin than those on unmodified PCS. The presence of nutrients in SYE + PCS also affects the hydrophobicity and surface roughness of the PC, improving mycelial cell adhesion. This study also provides a preliminary antioxidant activity assessment of EPS from immobilized C. militaris grown with SYE + PCS.

6.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627501

RESUMO

This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.

7.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37303155

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a pharmaceutically significant aromatic crop with health benefits linked to its phytochemicals. This article aims to overview progress in using emerging technologies to extract its bioactive compounds and extraction mechanisms. Also, the trends in the applications of this herb in the food industry and its therapeutical effects were explained. Fenugreek's flavor is the primary reason for its applications in the food industry. At the same time, it has antimicrobial, antibacterial, hepatoprotection, anticancer, lactation, and antidiabetic effects. Phytochemicals responsible for these effects include galactomannans, saponins, alkaloids, and polyphenols. Besides, data showed that emerging technologies boost fenugreek extracts' yield and biological activity. Among these, ultrasound (55.6%) is the most studied technology, followed by microwave (37.0%), cold plasma (3.7%), and combined approaches (3.7%). Processing conditions (e.g., treatment time and intensity) and solvent (type, ratio, and concentration) are significant parameters that affect the performance of these novel extraction technologies. Extracts obtained by sustainable energy-saving emerging technologies can be used to develop value-added health-promoting products.


Fenugreek's phytochemicals (e.g., galactomannans and polyphenols) have therapeutic effectsUltrasound and microwave are major emerging technologies for fenugreek's bioactive compound extractionEmerging technologies enhance the yield and biological activities of fenugreek extractsEmerging extraction technologies can develop fenugreek-based products with health benefits.

8.
J Food Sci Technol ; 60(3): 1045-1053, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908344

RESUMO

Old preserved radish (OPR), a traditional pickled-food of Asia, contains the healthy bioactive compounds, such as phenols and flavonoids. To preserve the phenols levels in radish by thermal treatment, which are decreased due to the polyphenol oxidase activity during long storage. Range of thermal processing evaluated to retain the maximum phenols level in the radish while processed at temperatures of 70 °C, 80 °C and 90 °C for 30 days. In this study, the bioactive compounds and antioxidant activity of thermal processing radish (TPR) were evaluated and compared with commercial products of OPR. Results showed the best condition of thermal processing, 80°C for 30 days, could increase the values of phenols, flavonoids and antioxidant activity that were 2.27, 2.74 and 2.89 times, respectively. When comparing the thermally processed radish or TPR with OPR, TPR has a higher content of phenols and flavonoids, indicating that the thermal processing was effective to increase the content of functional compounds in radish and significantly improved its nutritional values.

9.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296587

RESUMO

Black garlic (BG) is an emerging derivative of fresh garlic with enhanced nutritional properties. This study aimed to develop functional BG products with good consumer acceptance. To this end, BG was treated with freezing (F-BG), ultrasound (U-BG), and HHP (H-BG) to assess its sensory and functional properties. The results showed that F-BG and H-BG had higher S-allyl-cysteine (SAC), polyphenol, and flavonoid contents than BG. H-BG and F-BG displayed the best sensory quality after 18 days of aging, while 5-hydroxymethylfurfural (5-HMF), SAC, and polyphenols were identified as the most influential sensory parameters. Moreover, the F-BG and H-BG groups achieved optimal taste after 18 days, as opposed to untreated BG, which needed more than 24 days. Therefore, the proposed approaches significantly reduced the processing time while enhancing the physical, sensory, and functional properties of BG. In conclusion, freezing and HHP techniques may be considered promising pretreatments to develop BG products with good functional and sensory properties.


Assuntos
Produtos Biológicos , Alho , Polifenóis , Congelamento , Cisteína , Antioxidantes , Flavonoides
10.
Antioxidants (Basel) ; 11(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35624712

RESUMO

Violacein has attracted increasing attention due to its various biological activities, such as antibacterial, antifungal, antioxidative, and antitumor effects. To improve violacein production, formic acid (FA) was added to a culture medium, which resulted in a 20% increase (1.02 g/L) compared to the no-FA-addition group (0.85 g/L). The use of a stirred-tank bioreactor system also improved violacein production (by 0.56 g/L). A quorum-sensing (QS)-related gene (cviI) was induced by FA treatment, which revealed that the mechanism induced by FA utilized regulation of the cviI gene to induce the vio gene cluster for violacein production. To analyze the antioxidative properties of the violacein produced, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging tests were conducted, and results reveal that the values of the 50% inhibitory concentration (IC50) of DPPH and ABTS were 0.286 and 0.182 g/L, respectively. Violacein also showed strong inhibitory activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In summary, this study found that the addition of formic acid can promote QS of Chromobacterium violaceum, thereby promoting the synthesis of violacein. Subsequently, the promoting effect was also evaluated in a bioreactor system. These findings will be helpful in establishing an economically beneficial production model for violacein in future work.

11.
Polymers (Basel) ; 14(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458368

RESUMO

Myristica fragrans essential oil (MFEO) is a potential active compound for application as an active packaging material. A new approach was developed using a cold plasma treatment to incorporate MFEO to improve the optical, physical, and bacterial inhibition properties of the film. The MFEO was added as coarse emulsion (CE), nanoemulsion (NE), and Pickering emulsion (PE) at different concentrations. The PE significantly affected (p < 0.05) the optical, physical, and chemical properties compared with CE and NE films. The addition of MFEO to low-density polyethylene (LDPE) film significantly reduced water vapor permeability (WVP) and oxygen permeability (OP) and showed marked activity against E. coli and S. aureus (p < 0.05). The release rate of PE films after 30 h was 70% lower than that of CE and NE films. Thus, it can be concluded that the fabrication of active packaging containing MFEO is a potential food packaging material.

12.
Compr Rev Food Sci Food Saf ; 21(3): 2665-2687, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355410

RESUMO

S-allyl cysteine (SAC), which is the most abundant bioactive compound in black garlic (BG; Allium sativum), has been shown to have antioxidant, anti-apoptotic, anti-inflammatory, anti-obesity, cardioprotective, neuroprotective, and hepatoprotective activities. Sulfur compounds are the most distinctive bioactive elements in garlic. Previous studies have provided evidence that the concentration of SAC in fresh garlic is in the range of 19.0-1736.3 µg/g. Meanwhile, for processed garlic, such as frozen and thawed garlic, pickled garlic, fermented garlic extract, and BG, the SAC content increased to up to 8021.2 µg/g. BG is an SAC-containing product, with heat treatment being used in nearly all methods of BG production. Therefore, strategies to increase the SAC level in garlic are of great interest; however, further knowledge is required about the effect of processing factors and mechanistic changes. This review explains the formation of SAC in garlic, introduces its biological effects, and summarizes the recent advances in processing methods that can affect SAC levels in garlic, including heat treatment, enzymatic treatment, freezing, fermentation, ultrasonic treatment, and high hydrostatic pressure. Thus, the aim of this review was to summarize the outcomes of treatment aimed at maintaining or increasing SAC levels in BG. Therefore, publications from scientific databases in this field of study were examined. The effects of processing methods on SAC compounds were evaluated on the basis of the SAC content. This review provides information on the processing approaches that can assist food manufacturers in the development of value-added garlic products.


Assuntos
Produtos Biológicos , Alho , Antioxidantes/farmacologia , Cisteína/análogos & derivados , Cisteína/farmacologia , Manipulação de Alimentos/métodos
13.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681911

RESUMO

Ganoderma formosanum (GF) is a medicinal mushroom endemic to Taiwan. Previous research established the optimal culture conditions to produce exopolysaccharide rich in ß-glucan (GF-EPS) from submerged fermentation of GF. The present study investigated the antitumor effects of GF-EPS in a Lewis lung carcinoma cell (LLC1) tumor-bearing mice model. In the preventive model, GF-EPS was orally administered to mice before LLC1 injection. In the therapeutic model, GF-EPS oral administration was initiated five days after tumor cell injection. The tumor size and body weight of the mice were recorded. After sacrifice, the lymphocyte subpopulation was analyzed using flow cytometry. Spleen tissues were used to analyze cytokine mRNA expression. The results showed that GF-EPS (80 mg/kg) effectively suppressed LLC1 tumor growth in both the preventive and therapeutic models. GF-EPS administration increased the proportion of natural killer cells in the spleen and activated gene expression of several cytokines. Our results provide evidence that GF-EPS promotes tumor inhibition through immunomodulation in tumor-bearing mice.


Assuntos
Carcinoma Pulmonar de Lewis/tratamento farmacológico , Citocinas/genética , Polissacarídeos Fúngicos/administração & dosagem , Ganoderma/crescimento & desenvolvimento , Células Matadoras Naturais/metabolismo , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fermentação , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/farmacologia , Ganoderma/imunologia , Ganoderma/metabolismo , Regulação Neoplásica da Expressão Gênica , Imunomodulação , Células Matadoras Naturais/efeitos dos fármacos , Camundongos , Baço/imunologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Antioxidants (Basel) ; 10(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679724

RESUMO

Advanced glycation end products (AGEs) can induce oxidative stress and inflammation. AGEs are major risk factors for the development of many aging-related diseases, such as cancer and diabetes. In this study, Pholiota nameko polysaccharides (PNPs) were prepared from water extract of P. nameko via graded alcohol precipitation (40%, 60%, and 80% v/v). We explored the in vitro antiglycation ability of the PNPs and inhibition of methylglyoxal (MG)-induced Hs68 cell damage. In a bovine serum albumin (BSA) glycation system, PNPs significantly inhibited the formation of Amadori products. Fluorescence spectrophotometry revealed that the PNPs trapped MG and reduced MG-induced changes in functional groups (carbonyl and ε-NH2) in the BSA. Pretreating Hs68 cells with PNPs enhanced the cell survival rate and protected against MG-induced cell damage. This was due to decreased intracellular ROS content. PNPs thus mitigate skin cell damage and oxidative stress resulting from glycation stress, making them a potential raw material for antiaging-related skincare products.

15.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577129

RESUMO

This study developed a nutritionally valuable product with bioactive activity that improves the quality of bread. Djulis (Chenopodium formosanum), a native plant of Taiwan, was fermented using 23 different lactic acid bacteria strains. Lactobacillus casei BCRC10697 was identified as the ideal strain for fermentation, as it lowered the pH value of samples to 4.6 and demonstrated proteolysis ability 1.88 times higher than controls after 24 h of fermentation. Response surface methodology was adopted to optimize the djulis fermentation conditions for trolox equivalent antioxidant capacity (TEAC). The optimal conditions were a temperature of 33.5 °C, fructose content of 7.7%, and dough yield of 332.8, which yielded a TEAC at 6.82 mmol/kg. A 63% increase in TEAC and 20% increase in DPPH were observed when compared with unfermented djulis. Subsequently, the fermented djulis was used in different proportions as a substitute for wheat flour to make bread. The total phenolic and flavonoid compounds were 4.23 mg GAE/g and 3.46 mg QE/g, marking respective increases of 18% and 40% when the djulis was added. Texture analysis revealed that adding djulis increased the hardness and chewiness of sourdough breads. It also extended their shelf life by approximately 2 days. Thus, adding djulis to sourdough can enhance the functionality of breads and may provide a potential basis for developing djulis-based functional food.


Assuntos
Pão , Fermentação , Farinha , Antioxidantes , Lactobacillales
16.
Polymers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203311

RESUMO

In this study, a preservation package that can extend the shelf life of Agaricus bisporus was developed using plasma modification combined with low-density polyethylene (LDPE), collagen (COL), and carboxymethyl cellulose (CMC). Out results showed that the selectivity of LDPE to gas can be controlled by plasma modification combined with coating of different concentrations of CMC and COL. Packaging test results applied to A. bisporus showed that 3% and 5% of CMC and COL did not significantly inhibit polyphenol oxidase and ß-1,3-glucanase, indicating no significant effect on structural integrity and oxidative browning. The use of 0.5% and 1.0% CMC and COL can effectively inhibit the polyphenol oxidase and ß-1,3-glucanase activity of A. bisporus, leading to improved effects in browning inhibition and structural integrity maintenance. P-1.0COL can effectively maintain gas composition in the package (carbon dioxide: 10-15% and oxygen: 8-15%) and catalase activity during storage, thereby reducing the oxidative damage caused by respiration of A. bisporus. The current study confirmed that the use of plasma modification technology combined with 1.0% COL can be used in preservation packaging by regulating the respiration of A. bisporus, thus extending its shelf life from 7 to 21 days.

17.
J Food Sci ; 86(7): 3109-3121, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34146408

RESUMO

Inhibition of α-glucosidase can slow carbohydrate metabolism, which is known as an effective strategy for diabetes treatment. The aim of this study is to evaluate the effect of thermal treatment (50, 60, and 70℃) for 15 days on the α-glucosidase inhibitory activity of bitter melon. The results show that the bitter melon heated at 70℃ for 12 days had the best α-glucosidase inhibitory effect. However, the amount of free polyphenols, 5-hydroxymethyl-2-furfural (5-HMF), and the browning degree of bitter melon generally increased with the time (15 days) and temperature of the thermal treatment, which is positively related to their antioxidant and α-glucosidase inhibitory activities. In conclusion, aged bitter melon shows great α-glucosidase inhibitory activity, which may be related to the increased free form of the involved phenolic compounds and Maillard reaction products. This suggests that thermal processing may be a good way to enhance the application of bitter melon for diabetes treatment. PRACTICAL APPLICATION: The thermal processing of bitter melon provides an application for diabetes treatment. This study demonstrated that heat-treated bitter melon can lower the blood glucose level; therefore, it can be used as a potential anti-hyperglycemic and functional food.


Assuntos
Antioxidantes/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Temperatura Alta , Momordica charantia/química , Fenóis/metabolismo , Extratos Vegetais/farmacologia , alfa-Glucosidases/farmacologia , Antioxidantes/química , Produtos Finais de Glicação Avançada/análise , Fenóis/análise , Extratos Vegetais/química , alfa-Glucosidases/química
18.
Chin J Physiol ; 64(1): 32-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642342

RESUMO

This study was designed to evaluate the anti-inflammatory effects of Alpinia officinarum Hance extract (AOE) and identify its main active ingredients. AOE was obtained using a 95% ethanol extraction method. Lipopolysaccharide (LPS) were used to induce an inflammatory response in RAW264.7 cells. The results showed that AOE exerts anti-inflammatory effects via inhibition of prostaglandin E2 secretion and cyclooxygenase -2 (COX-2) production. We further analyzed the components of AOE using high-performance liquid chromatography and found that AOE is comprised of several bioactive flavonoids including quercetin (Q), kaempferol (K), galangin (G), and curcumin (C). These four flavonoids effectively inhibited nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α production. Moreover, they reduced COX-2 and inducible NO synthase expressions via regulation of nuclear factor kappa-light-chain-enhancer of activated B cells and c-Jun N-terminal kinase signaling pathways. Furthermore, we compared and contrasted the anti-inflammatory effects and mechanisms of these four flavonoids at the same dose in the LPS-induced cell inflammation model. The results showed that C is the most effective inhibitor of LPS-induced NO production. However, only Q and K effectively attenuated LPS-induced extracellular signal-regulated kinase and p38 elevations. In conclusion, AOE and its major bioactive compounds exert anti-inflammatory effects on LPS-induced inflammation. As A. officinarum Hance is much cheaper than any of its four flavonoids, especially G, we suggest using AOE as an anti-inflammatory agent.


Assuntos
Alpinia , NF-kappa B , Alpinia/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2 , Lipopolissacarídeos , Macrófagos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico , Óxido Nítrico Sintase Tipo II
19.
Int J Biol Macromol ; 172: 270-280, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418049

RESUMO

Enzyme immobilization can increase enzyme reusability to reduce cost of industrial production. Ginkgo biloba leaf extract is commonly used for medical purposes, but it contains ginkgolic acid, which has negative effects on human health. Here, we report a novel approach to solve the problem by degrading the ginkgolic acid with immobilized-laccase, where core/shell composite nanoparticles prepared by coaxial electrospraying might be first applied to enzyme immobilization. The core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) were prepared using one-step coaxial electrospraying and can be simply recovered by magnetic force. The glutaraldehyde-treated FNCNs (FNGCNs) were used to immobilize laccase. As a result, thermal stability of the free laccase was significantly improved in the range of 60-90 °C after immobilization. The laccase-immobilized FNGCNs (L-FNGCNs) were applied to degrade the ginkgolic acids, and the rate constants (k) and times (τ50) were ~0.02 min-1 and lower than 39 min, respectively, showing good catalytic performance. Furthermore, the L-FNGCNs exhibited a relative activity higher than 0.5 after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the FNGCNs carrier was a promising enzyme immobilization system and its further development and applications were of interest.


Assuntos
Óxido Ferroso-Férrico/química , Proteínas Fúngicas/química , Ginkgo biloba/química , Lacase/química , Nanopartículas de Magnetita/química , Salicilatos/química , Reagentes de Ligações Cruzadas/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/isolamento & purificação , Reutilização de Equipamento , Proteínas Fúngicas/isolamento & purificação , Glutaral/química , Hidrólise , Cinética , Lacase/isolamento & purificação , Nanopartículas de Magnetita/ultraestrutura , Nylons/química , Extratos Vegetais/química , Folhas de Planta/química , Polyporaceae/química , Polyporaceae/enzimologia
20.
J Cosmet Dermatol ; 20(7): 2341-2349, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33200469

RESUMO

BACKGROUND: Ganoderma has been known as a cure for diseases since ancient times, and been used as a medicinal mushroom for more than 2000 years. By many accounts, Ganoderma lucidum extracts from fruit bodies exhibited the comparable tyrosinase inhibition activity. AIMS: To validate A. cinnamomea mycelia anti-melanogenesis activity. Ethanolic extracts of A. cinnamomea mycelia were evaluated using in vitro cell-free tyrosinase assay, cell-based and zebrafish phenotype-based method. Meanwhile, safety assessment was also conducted to ensure the feasibility as the novel ingredients in cosmetic and pharmaceutic industries. METHODS: The major regulatory enzymes being in charge of cutaneous pigmentation, was investigated in both cell-free and cellular enzyme systems, and in phenotype-based zebrafish model. A high-throughput TLC in vitro screening system was introduced to perform the initial evaluation of those with anti-melanin formation activity. RESULTS: Among the fractions, 50% ethanol extracted fraction (AC_Et50_Hex) exhibited highest anti-melanin formation activity. AC_Et50_Hex (at 100 ppm) reduced 30% intracellular melanin of B16-F10 cells through suppression of tyrosinase activity and its protein expression. For animal study, not only does AC_Et50_Hex exhibited similar depigmenting efficacy to kojic acid (56.1% vs 52.3%) with lower dosage (50 ppm vs 1400 ppm), but showed less toxicity to zebrafish. CONCLUSION: A. cinnamomea mycelium extracts can be an ideal candidate/substitute for skin-whitening since kojic acid has been reported with carcinogenic effect. AC_Et50_Hex was recognized as a potential tyrosinase inhibitor throughout in vitro and in vivo analysis studies. The mass production of A. cinnamomea mycelium from agitated fermentation realizes the natural mushroom extracts for commercial application.


Assuntos
Monofenol Mono-Oxigenase , Peixe-Zebra , Animais , Melaninas , Micélio , Polyporales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA