Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806225

RESUMO

We studied SARS-CoV-2-specific T cell responses in 22 subacute MIS-C children enrolled in 2021 and 2022 using peptide pools derived from SARS-CoV-2 spike or nonspike proteins. CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in 5 subjects, CD4+ T helper (Th) responses alone were detected in 12 subjects, and CD8+ cytotoxic T cell (CTL) responses alone were documented in 1 subject. Notably, a sizeable subpopulation of CD4- CD8- double-negative (DN) T cells out of total CD3+ T cells was observed in MIS-C (median: 14.5%; IQR 8.65-25.3) and recognized SARS-CoV-2 peptides. T cells bearing the Vß21.3 T cell receptor (TcRs), previously reported as pathogenic in the context of MIS-C, were detected in high frequencies, namely, in 2.8% and 3.9% of the CD4+ and CD8+ T cells, respectively. However, Vß21.3 CD8+ T cells that responded to SARS-CoV-2 peptides were detected in only a single subject, suggesting recognition of nonviral antigens in the majority of subjects. Subjects studied 6-14 months after MIS-C showed T cell epitope spreading, meaning the activation of T cells that recognize more SARS-CoV-2 peptides following the initial expansion of T cells that see immunodominant epitopes. For example, subjects that did not recognize nonspike proteins in the subacute phase of MIS-C showed good Th response to nonspike peptides, and/or CD8+ T cell responses not appreciable before arose over time and could be detected in the 6-14 months' follow-up. The magnitude of the Th and CTL responses also increased over time. In summary, patients with MIS-C associated with acute lymphopenia, a classical feature of MIS-C, showed a physiological response to the virus with a prominent role for virus-specific DN T cells.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/complicações , Criança , Humanos , Peptídeos/metabolismo , Síndrome de Resposta Inflamatória Sistêmica
2.
Otolaryngol Head Neck Surg ; 159(4): 638-642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29759030

RESUMO

Recurrent respiratory papillomatosis (RRP) is mainly caused by human papillomavirus (HPV) 6 and 11. While various adjuvant therapies have been reported, no effective therapy has been documented to universally "cure" this disease. In the era of precision medicine, it would be valuable to identify effective intervention based on drug sensitivity testing and/or molecular analysis. It is essential to be able to successfully carry out in vitro culture and expand tumor cells directly from patients to accomplish this goal. Here we report the result of successful culture of HPV-infected cell lines (success rate 70%, 9/13) that express the E6/E7 RNA transcript, using pathologic tissue biopsies from patients treated at our institution. The availability of such a system would enable ex vivo therapeutic testing and disease modeling.


Assuntos
Células Cultivadas/virologia , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções Respiratórias/patologia , Biópsia por Agulha , Células Cultivadas/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Infecções por Papillomavirus/fisiopatologia , Sensibilidade e Especificidade
3.
Colloids Surf B Biointerfaces ; 161: 200-209, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080504

RESUMO

Circulating tumor cells (CTCs) are extremely rare cells found in blood of metastatic cancer patients. There is a need for inexpensive technologies for fast enrichment of CTCs from large blood volumes. Previous data showed that antibody-conjugated lipid shell immuno-microbubbles (MBs) bind and isolate cells from biological fluids by flotation. Here, blood-stable MBs targeted to several surface markers for isolation of breast tumor cells were developed. MBs coated with anti-human EpCAM antibodies showed efficient binding of EpCAM+ breast cancer cell lines SKBR-3, MCF-7, and MDA-MB-453, whereas anti-human EGFR MBs showed binding of EpCAMLOW/NEGATIVE cell lines MDA-MB-231 and BT-549. Multitargeted anti-human EpCAM/EGFR MBs bound all cell lines with over 95% efficiency. Highly concentrated MB-bound tumor cells were collected in a microliter volume via an inverted vacuum-assisted harvesting setup. Using anti-EpCAM and/or anti-EpCAM/EGFR MBs, an efficient (70-90%) recovery and fast (30min) isolation of the above-mentioned cells and cell clusters was achieved from 7.5mL of spiked human blood. Using anti-EpCAM MBs and anti-EpCAM/EGFR MBs, cytokeratin-positive, CD45-negative CTCs were detected in 62.5% (10/16) of patients with metastatic breast cancer and CTC clusters were detected in 41.7% (5/12) of CTC-positive samples. Moreover, in some samples MBs isolated cytokeratin positive, CD45 negative tumor-derived microparticles. None of these structures were detected in blood from non-epithelial malignancies. The fast and inexpensive multitargeted platform for batch isolation of CTCs can promote research and clinical applications involving primary tumors and metastases.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/sangue , Separação Celular/métodos , Microbolhas , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Queratinas/metabolismo , Células MCF-7 , Células Neoplásicas Circulantes/patologia
4.
Eur J Immunol ; 48(3): 482-491, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29244203

RESUMO

We characterized a novel population of tolerogenic myeloid dendritic cells (tmDCs) defined as CD11c+ CD11b+ CD14+ CD4+ and immunoglobulin-like transcript receptor (ILT)-4+ that are significantly more abundant in the circulation of infants and young children than in adults. TmDCs secrete the immunosuppressive lymphokine interleukin (IL)-10 when stimulated with the heavy constant region of immunoglobulins (Fc) and express high levels of the adenosine A2A receptor (A2A R), which, when activated by adenosine, inhibits the release of pro-inflammatory cytokines from most immune cells. Here we show that stimulation of the A2A R on tmDCs by regadenoson or N-ethylcarboxamidoadenosine (NECA) rapidly increases cyclic AMP accumulation and enhances IL-10 production under Fc stimulatory conditions. In co-culture experiments, tmDCs inhibit the differentiation of naïve T cells to a pro-inflammatory phenotype. In conclusion, although DCs are classically viewed as antigen presenting cells that activate T cells, we show an independent role of tmDCs in pediatric immune regulation that may be important for suppressing T cell responses to neoantigens in infants and young children.


Assuntos
Células Dendríticas/imunologia , Interleucina-10/biossíntese , Adenosina/farmacologia , Antígenos CD4/metabolismo , Diferenciação Celular , Criança , Pré-Escolar , Estudos de Coortes , AMP Cíclico/metabolismo , Células Dendríticas/classificação , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Tolerância Imunológica , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Técnicas In Vitro , Lactente , Masculino , Glicoproteínas de Membrana/metabolismo , Síndrome de Linfonodos Mucocutâneos/imunologia , Receptor A2A de Adenosina/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
5.
Vet Res ; 45: 123, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25512064

RESUMO

Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV) infection, is a highly lethal disease without effective therapy and prevention. With an immune-mediated disease entity, host genetic variant was suggested to influence the occurrence of FIP. This study aimed at evaluating cytokine-associated single nucleotide polymorphisms (SNPs), i.e., tumor necrosis factor alpha (TNF-α), receptor-associated SNPs, i.e., C-type lectin DC-SIGN (CD209), and the five FIP-associated SNPs identified from Birman cats of USA and Denmark origins and their associations with the outcome of FCoV infection in 71 FIP cats and 93 FCoV infected non-FIP cats in a genetically more diverse cat populations. A promoter variant, fTNFA - 421 T, was found to be a disease-resistance allele. One SNP was identified in the extracellular domain (ECD) of fCD209 at position +1900, a G to A substitution, and the A allele was associated with FIP susceptibility. Three SNPs located in the introns of fCD209, at positions +2276, +2392, and +2713, were identified to be associated with the outcome of FCoV infection, with statistical relevance. In contrast, among the five Birman FIP cat-associated SNPs, no genotype or allele showed significant differences between our FIP and non-FIP groups. As disease resistance is multifactorial and several other host genes could involve in the development of FIP, the five genetic traits identified in this study should facilitate in the future breeding of the disease-resistant animal to reduce the occurrence of cats succumbing to FIP.


Assuntos
Moléculas de Adesão Celular/genética , Coronavirus Felino/fisiologia , Peritonite Infecciosa Felina/genética , Lectinas Tipo C/genética , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Fator de Necrose Tumoral alfa/genética , Animais , Gatos , Moléculas de Adesão Celular/metabolismo , Suscetibilidade a Doenças/veterinária , Peritonite Infecciosa Felina/virologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Fator de Necrose Tumoral alfa/metabolismo
6.
Res Vet Sci ; 95(3): 1241-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24050534

RESUMO

Feline coronavirus (FCoV) can cause either asymptomatic enteric infection or fatal peritonitis in cats. Although the mutation of FCoV accessory gene 3c has been suggested to be related to the occurrence of feline infectious peritonitis (FIP), how the 3C protein is involved in this phenomenon remains unknown. To investigate the role of the 3C protein, a full-length 3c gene was transiently expressed and the cytoplasmic distribution of the protein was found to be primarily in the perinuclear region. Using 3c-stable expression cells, the replication of a 3c-defective FCoV strain was titrated and a significant decrease in replication (p<0.05) was observed. The mechanism underlying the decreased FIPV replication caused by the 3C protein was further investigated; neither the induction nor inhibition of autophagy rescued the viral replication. Taken together, our data suggest that the 3C protein might have a virulence-suppressing effect in FCoV-infected cats. Deletion of the 3c gene could therefore cause more efficient viral replication, which leads to a fatal infection.


Assuntos
Coronavirus Felino/fisiologia , Cisteína Endopeptidases/fisiologia , Peritonite Infecciosa Felina/virologia , Replicação Viral/fisiologia , Animais , Autofagia/fisiologia , Gatos , Células Cultivadas , Proteases 3C de Coronavírus , Coronavirus Felino/patogenicidade , Cisteína Endopeptidases/biossíntese , Feminino , Masculino , Virulência/fisiologia
7.
Vet Res ; 44: 57, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23865689

RESUMO

Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.


Assuntos
Coronavirus Felino/classificação , Coronavirus Felino/isolamento & purificação , Surtos de Doenças/veterinária , Peritonite Infecciosa Felina/transmissão , Peritonite Infecciosa Felina/virologia , Genes Virais , Animais , Sequência de Bases , Gatos , Coronavirus Felino/genética , Coronavirus Felino/metabolismo , Fezes/virologia , Epidemiologia Molecular , Dados de Sequência Molecular , Mutação , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência/veterinária , Taiwan , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA