Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451121

RESUMO

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Assuntos
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
2.
Phytomedicine ; 101: 154092, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35430483

RESUMO

BACKGROUND: 5-FU-induced intestinal mucositis (FUIIM) is a common gastrointestinal side effect of chemotherapy, leading to gastric pain in clinical cancer patients. In a previous study, we demonstrated that neutrophil elastase (NE) inhibitors could alleviate FUIIM and manipulate the homeostasis of the gut microbiota. The root of Melastoma malabathricum, also called Ye-Mu-Dan, has been used as a traditional Chinese medicine for gastrointestinal disease. Water extract of the roots of M. malabathricum exhibits an inhibitory effect on NE, with an IC50 value of 9.13 µg/ml. PURPOSE: In this study, we aimed to isolate an anti-NE compound from the root of M. malabathricum and to determine the protective effect of the bioactive component on a mouse model of FUIIM with respect to tissue damage, inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. METHODS: A water extract of the roots of M. malabathricum was prepared and its major bioactive compound, was identified using bioactivity-guided fractionation. The effects of samples on the inhibition of NE activity were evaluated using enzymatic assays. To evaluate the effects of the bioactive compound in an FUIIM animal model, male C57BL/6 mice treated with or without casuarinin (50 and 100 mg/kg/day, p.o.), and then received of 5-fluorouracil (50 mg/kg/day) intraperitoneally for 5 days to induce FUIIM. Histopathological staining was used to monitor the tissue damage, proliferation of intestinal crypts, and expression of tight junction proteins. The inflammation score was estimated by determining the levels of oxidative stress, neutrophil-related proteases, and proinflammatory cytokines in tissue and serum. The ecology of the gut microbiota was evaluated using 16S rRNA gene sequencing. RESULTS: Casuarinin had the most potent and selective effect against NE, with an IC50 value of 2.79 ± 0.07 µM. Casuarinin (100 mg/kg/day, p.o.) significantly improved 5-FU-induced body weight loss together with food intake reduction, and it also significantly reversed villus atrophy, restored the proliferative activity of the intestinal crypts, and suppressed inflammation and intestinal barrier dysfunction in the mouse model of FUIIM. Casuarinin also reversed 5-FU-induced gut microbiota dysbiosis, particularly the abundance of Actinobacteria, Candidatus Arthromitus, and Lactobacillus murinus, and the Firmicutes-to-Bacteroidetes ratio. CONCLUSION: This study firstly showed that casuarinin isolated from the root part of M. malabathricum could be used as a NE inhibitor, whereas it could improve FUIIM by modulating inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. In summary, exploring anti-NE natural product may provide a way to find candidate for improvement of FUIIM.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Enteropatias , Mucosite , Animais , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Fluoruracila/efeitos adversos , Gastroenteropatias/induzido quimicamente , Humanos , Taninos Hidrolisáveis , Inflamação/metabolismo , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , RNA Ribossômico 16S/genética , Água
3.
J Virol ; 96(7): e0054221, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319229

RESUMO

While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.


Assuntos
Ácido Clorogênico/análogos & derivados , Enterovirus Humano A , Infecções por Enterovirus , Ilex , Plantas Medicinais , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Ácido Clorogênico/uso terapêutico , Enterovirus Humano A/genética , Infecções por Enterovirus/tratamento farmacológico , Heparitina Sulfato/metabolismo , Humanos , Ilex/química , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química
4.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768876

RESUMO

The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.


Assuntos
Canais de Cálcio/metabolismo , Ácido Clorogênico/farmacologia , Ácido Glutâmico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Ácido Clorogênico/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios , Ácido Glutâmico/efeitos dos fármacos , Ácido Caínico/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo
5.
Viruses ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578337

RESUMO

The Michael addition reaction is a spontaneous and quick chemical reaction that is widely applied in various fields. This reaction is performed by conjugating an addition of nucleophiles with α, ß-unsaturated carbonyl compounds, resulting in the bond formation of C-N, C-S, C-O, and so on. In the development of molecular materials, the Michael addition is not only used to synthesize chemical compounds but is also involved in the mechanism of drug action. Several covalent drugs that bond via Michael addition are regarded as anticarcinogens and anti-inflammatory drugs. Although drug development is mainly focused on pharmaceutical drug discovery, target-based discovery can provide a different perspective for drug usage. However, considerable time and labor are required to define a molecular target through molecular biological experiments. In this review, we systematically examine the chemical structures of current FDA-approved antiviral drugs for potential Michael addition moieties with α, ß-unsaturated carbonyl groups, which may exert an unidentified broad-spectrum inhibitory mechanism to target viral or host factors. We thus propose that profiling the targets of antiviral agents, such as Michael addition products, can be achieved by employing a high-throughput LC-MS approach to comprehensively analyze the interaction between drugs and targets, and the subsequent drug responses in the cellular environment to facilitate drug repurposing and/or identify potential adverse effects, with a particular emphasis on the pros and cons of this shotgun proteomic approach.


Assuntos
Antivirais/química , Descoberta de Drogas/métodos , Compostos Orgânicos/química , Preparações Farmacêuticas/química , Proteômica/métodos , Antivirais/isolamento & purificação , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos
6.
Biomolecules ; 11(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356653

RESUMO

Rosmarinic acid, a major component of rosemary, is a polyphenolic compound with potential neuroprotective effects. Asreducing the synaptic release of glutamate is crucial to achieving neuroprotectant's pharmacotherapeutic effects, the effect of rosmarinic acid on glutamate release was investigated in rat cerebrocortical nerve terminals (synaptosomes). Rosmarinic acid depressed the 4-aminopyridine (4-AP)-induced glutamate release in a concentration-dependent manner. The removal of extracellular calcium and the blockade of vesicular transporters prevented the inhibition of glutamate release by rosmarinic acid. Rosmarinic acid reduced 4-AP-induced intrasynaptosomal Ca2+ elevation. The inhibition of N-, P/Q-type Ca2+ channels and the calcium/calmodulin-dependent kinase II (CaMKII) prevented rosmarinic acid from having effects on glutamate release. Rosmarinic acid also reduced the 4-AP-induced activation of CaMKII and the subsequent phosphorylation of synapsin I, the main presynaptic target of CaMKII. In addition, immunocytochemistry confirmed the presence of GABAA receptors. GABAA receptor agonist and antagonist blocked the inhibitory effect of rosmarinic acid on 4-AP-evoked glutamate release. Docking data also revealed that rosmarinic acid formed a hydrogen bond with the amino acid residues of GABAA receptor. These results suggested that rosmarinic acid activates GABAA receptors in cerebrocortical synaptosomes to decrease Ca2+ influx and CaMKII/synapsin I pathway to inhibit the evoked glutamate release.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Ácido Glutâmico/metabolismo , Sinaptossomos/efeitos dos fármacos , 4-Aminopiridina/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cinamatos/química , Depsídeos/química , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sinaptossomos/metabolismo , Ácido Rosmarínico
7.
Biomed Pharmacother ; 134: 111152, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373916

RESUMO

BACKGROUND: 5-Fluorouracil (5-FU)-based chemotherapy is first-line chemotherapy for colorectal cancer. However, 5-FU-induced intestinal mucositis (FUIIM) is a common adverse effect that severely impairs drug tolerance and results in poor patient health. METHODS: Male C57BL/6 mice were given 5-FU (50 mg/kg/day, i.p.) and treated with MPH-966 (5 and 7.5 mg/kg/day, p.o.) for five days. The body weight loss and the amount of food intake, and histopathological findings were recorded and analyzed. In addition, the neutrophil infiltration, levels of neutrophil serine proteases and pro-inflammatory cytokines, and tight junction proteins expression in intestinal tissues were determined. The ecology of gut microbiota was performed through next-generation sequencing technologies. RESULTS: Neutrophil elastase (NE) overexpression is a key feature in FUIIM. This study showed that treatment with the specific NE inhibitor MPH-966 (7.5 mg/kg/day, p.o.) significantly reversed 5-FU-induced loss in body weight and food intake; reversed villous atrophy; significantly suppressed myeloperoxidase, NE, and proteinase 3 activity; and reduced pro-inflammatory cytokine expression in an FUIIM mouse model. In addition, MPH-966 prevented 5-FU-induced intestinal barrier dysfunction, as indicated by the modulated expression of the tight junction proteins zonula occludin-1 and occludin. MPH-966 also reversed 5-FU-induced changes in gut microbiota diversity and abundances, specifically the Firmicutes-to-Bacteroidetes ratio; Muribaculaceae, Ruminococcaceae, and Eggerthellaceae abundances at the family level; and Candidatus Arthromitus abundance at the genus level. CONCLUSION: These data indicate that NE inhibitor is a key treatment candidate to alleviate FUIIM by regulating abnormal inflammatory responses, intestinal barrier dysfunction, and gut microbiota imbalance.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Elastase de Leucócito/antagonistas & inibidores , Mucosite/prevenção & controle , Neutrófilos/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Fluoruracila , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/enzimologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Elastase de Leucócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mucosite/enzimologia , Mucosite/microbiologia , Mucosite/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Ocludina/metabolismo , Permeabilidade , Ratos , Proteína da Zônula de Oclusão-1/metabolismo
8.
J Food Drug Anal ; 28(1): 115-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883599

RESUMO

Tumor cell-induced platelet aggregation (TCIPA) is a mechanism that involves the protection of tumor cells in the circulation and the promotion of tumor cell invasion and metastases. The C-type lectin-like receptor 2 (CLEC-2) that binds podoplanin (PDPN) is on the platelet surface and facilitates the TCIPA. Selective blockage of the PDPN-mediated platelet-tumor cell interaction is thereby a plausible strategy for inhibiting metastases. In a search for antagonists of PDPN- and tumor cell-induced platelet aggregation, traditional Chinese medicines were screened and it was found that the water extract of Artemisia argyi leaves selectively inhibited the PDPN-induced platelet aggregation. Bioactivity-guided fractionation analysis was performed for defining a polysaccharide-containing fraction (AAWAP) characterized by inhibition of PDPN activity and tumor cell-induced platelet aggregation. The pharmacological effects of AAWAP on PDPN-activated CLEC-2 signaling were determined by using Western blot and alpha screening analyses. AAWAP was non-toxic to the cells and platelets and it suppressed PDPN- and tumor cell-induced platelet aggregation by irreversibly blocking the interaction between PDPN and CLEC-2 in a dose-dependent manner. These findings indicate that AAWAP is an antagonist of the PDPN-CLEC-2 interaction. This action by AAWAP may result in the prevention of tumor cell metastases, and if so, could become an effective pharmacological agent in treating cancer patients.


Assuntos
Artemisia/classificação , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Agregação Plaquetária/efeitos dos fármacos , Polissacarídeos/farmacologia , Linhagem Celular Tumoral , Humanos , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química
9.
PLoS One ; 14(9): e0222331, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553741

RESUMO

Podoplanin, a transmembrane glycoprotein, is overexpressed in certain types of tumors and induces platelet aggregation by binding to C-type lectin-like receptor 2 (CLEC-2) on the platelet membrane. Activated platelets release granule components, which in turn, trigger epithelial-mesenchymal transition and confer invasive capacity to the tumor cells. Therefore, blocking the podoplanin-CLEC-2 interaction by a small-molecule compound is a potential therapeutic strategy to prevent cancer metastasis and invasion. To effectively identify such inhibitory compounds, we have developed a pull-down-based inhibitory compound screening system. An immunoglobulin Fc domain-CLEC-2 fusion protein was used as a bait to capture podoplanin derived from podoplanin-overexpressing HeLa cells in the presence and absence of the test compound. The protein complex was then pulled down using protein A beads. To shorten the turnaround time, increase throughput, and decrease the workload for the operators, centrifugal filter units were employed to separate free and bound podoplanin, instead of using customary aspiration-centrifugation washing cycles. Slot blotting was also utilized in lieu of gel electrophoresis and electrical transfer. Thus, the use of our pull down screening system could facilitate the effective selection of potential inhibitor compounds of the podoplanin-CLEC-2 interaction for cancer therapy. Importantly, our methodology is also applicable to targeting other protein-protein interactions.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Células HeLa , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Ligação Proteica , Proteínas Recombinantes
10.
Redox Biol ; 13: 266-277, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28600983

RESUMO

Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI may serve as a potential target for developing of a new class of antithrombotic agents. In the present study, we investigated the effects of HPW-RX40, a chemical derivative of ß-nitrostyrene, on platelet activation and PDI activity. HPW-RX40 inhibited platelet aggregation, GPIIb/IIIa activation, and P-selectin expression in human platelets. Moreover, HPW-RX40 reduced thrombus formation in human whole blood under flow conditions, and protects mice from FeCl3-induced carotid artery occlusion. HPW-RX40 inhibited the activity of recombinant PDI family proteins (PDI, ERp57, and ERp5) as well as suppressed cell surface PDI activity of platelets in a reversible manner. Exogenous addition of PDI attenuated the inhibitory effect of HPW-RX40 on GPIIb/IIIa activation. Structure-based molecular docking simulations indicated that HPW-RX40 binds to the active site of PDI by forming hydrogen bonds. In addition, HPW-RX40 neither affected the cell viability nor induced endoplasmic reticulum stress in human cancer A549 and MDA-MB-231 cells. Taken together, our results suggest that HPW-RX40 is a reversible and non-cytotoxic PDI inhibitor with antiplatelet effects, and it may have a potential for development of novel antithrombotic agents.


Assuntos
Plaquetas/efeitos dos fármacos , Clorobenzoatos/farmacologia , Inibidores Enzimáticos/farmacologia , Ativação Plaquetária , Isomerases de Dissulfetos de Proteínas/metabolismo , Estirenos/farmacologia , Animais , Sítios de Ligação , Plaquetas/imunologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/química
11.
Cancer Chemother Pharmacol ; 79(6): 1129-1140, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28500555

RESUMO

PURPOSE: The ß-nitrostyrene family has been previously reported to possess anticancer property. However, the biological effects of ß-nitrostyrenes on ovarian cancer and the underlying mechanisms involved remain unclear. In the present study, we synthesized a ß-nitrostyrene derivative, CYT-Rx20 3'-hydroxy-4'-methoxy-ß-methyl-ß-nitrostyrene), and investigated its anticancer effects and the putative pathways of action in ovarian cancer. METHODS: The effects of CYT-Rx20 were analyzed using cell viability assay, reactive oxygen species (ROS) generation assay, FACS analysis, annexin V staining, immunostaining, comet assay, immunoblotting, soft agar assay, migration assay, nude mice xenograft study and immunohistochemistry. RESULTS: CYT-Rx20 induced cytotoxicity in ovarian cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited ovarian cancer cell migration by regulating the expression of epithelial to mesenchymal transition (EMT) markers. In nude mice, CYT-Rx20 inhibited ovarian tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of EMT marker Vimentin. CONCLUSIONS: CYT-Rx20 inhibits ovarian cancer cells in vitro and in vivo, and has the potential to be further developed into an anti-ovarian cancer drug clinically.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Estirenos/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Feminino , Histonas/biossíntese , Histonas/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Vimentina/biossíntese , Vimentina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Head Neck ; 39(6): 1055-1064, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346709

RESUMO

BACKGROUND: The ß-nitrostyrene family possesses anticancer properties. In this study, ß-nitrostyrene derivative CYT-Rx20 (3'-hydroxy-4'-methoxy-ß-methyl-ß-nitrostyrene) was synthesized and investigated its anticancer activity in oral cancer. METHODS: Anticancer activity of CYT-Rx20 and the underlying mechanisms were analyzed using cell viability assay, reactive oxygen species (ROS) generation assay, fluorescence-activated cell sorter analysis, annexin V staining, comet assay, glutathione (GSH)/glutathione disulfide (GSSG) ratio, immunoblotting, soft agar assay, nude mice xenograft study, and immunohistochemistry. RESULTS: CYT-Rx20-induced cell apoptosis via ROS generation and mitochondrial membrane potential reduction, associated with release of mitochondrial cytochrome C to cytosol and activation of downstream caspases and poly ADP-ribose polymerase (PARP). Furthermore, CYT-Rx20 induced mitochondrial ROS accumulation and mitochondrial dysfunction, followed by GSH downregulation. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In nude mice, CYT-Rx20 inhibited oral tumor growth accompanied by increased expression of γH2AX, GSH reductase, and cleaved-caspase-3. CONCLUSION: CYT-Rx20 has the potential to be further developed into an antioral cancer drug clinically. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1055-1064, 2017.


Assuntos
Antineoplásicos/farmacologia , Glutationa/metabolismo , Neoplasias Bucais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Estirenos/farmacologia , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Biópsia por Agulha , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Citometria de Fluxo , Glutationa/efeitos dos fármacos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Bucais/patologia , Sensibilidade e Especificidade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Eur J Pharm Biopharm ; 114: 154-163, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161548

RESUMO

Melasma treatment with combined retinoic acid (RA) and hydroquinone (HQ) usually causes unsatisfactory outcomes and safety concerns. This study attempted to evaluate the cutaneous absorption and skin tolerance of the codrug conjugated with RA and HQ via ester linkage. The codrug's permeation of the pig skin was estimated using Franz diffusion cell. The codrug and parent drugs were comparatively examined for anti-inflammatory activity and tyrosinase inhibition. In vivo cutaneous irritation was assessed on nude mouse skin. Chemical conjugation of RA with HQ increased the lipophilicity and thus the skin absorption. The codrug absorption produced a 5.5- and a 60.8-fold increment compared to RA skin deposition at an equimolar (1.2mM) and saturated solubility dose, respectively. The cumulative amount of HQ derived from the codrug in the receptor was comparable to or less than that of topically applied HQ. The RA-HQ codrug was partly hydrolyzed on penetrating the skin. The hydrolysis rate in intact skin was significantly lower than that in esterase medium and skin homogenates. The codrug showed an interleukin (IL)-6 inhibition activity comparable to RA. A therapeutic index 6-fold greater than RA was obtained with the topical codrug. The tyrosinase inhibition percentage of the codrug and HQ was 13% and 21%, respectively. The skin tolerance test determined by transepidermal water loss (TEWL), redness, and histopathology had exhibited minor skin irritation caused by the codrug compared to the physical mixture of RA and HQ at an equivalent dose. Topical codrug delivery not only promoted RA absorption, but also diminished the adverse effects of the parent agents.


Assuntos
Hidroquinonas/administração & dosagem , Hidroquinonas/uso terapêutico , Melanose/tratamento farmacológico , Absorção Cutânea/efeitos dos fármacos , Tretinoína/administração & dosagem , Tretinoína/uso terapêutico , Administração Cutânea , Animais , Combinação de Medicamentos , Feminino , Hidrólise , Interleucina-6/biossíntese , Interleucina-6/genética , Irritantes , Camundongos , Camundongos Nus , Solubilidade , Suínos , Tretinoína/efeitos adversos
14.
Oncotarget ; 8(11): 18106-18117, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28178649

RESUMO

The ß-nitrostyrene family has been shown to suppress cell proliferation and induce apoptosis in types of various cancers. However, the mechanisms underlying the anticancer effects of ß-nitrostyrenes in colorectal cancer remain poorly understood. In this study, we synthesized a ß-nitrostyrene derivative, CYT-Rx20 (3'-hydroxy-4'-methoxy-ß-methyl-ß-nitrostyrene), and investigated its anticancer activities in human colorectal cancer cells both in vitro and in vivo. Our findings showed that treatment with CYT-Rx20 reduced cell viability and induced DNA damage in colorectal cancer cells. In addition, CYT-Rx20 induced cell cycle arrest of colorectal cancer cells at the G2/M phase and upregulated the protein expression of phospho-ERK, cyclin B1, phospho-cdc2 (Tyr15), aurora A, and aurora B, while it downregulated the expression of cdc25A and cdc25C. Furthermore, we found that CYT-Rx20 caused accumulation of intracellular reactive oxygen species (ROS) and reduction of mitochondrial membrane potential. The effects of CYT-Rx20 on cell viability, DNA damage, and mitochondrial membrane potential were reversed by pretreatment with the thiol antioxidant N-acetyl-L-cysteine (NAC), suggesting that ROS-mediated DNA damage and mitochondrial dysregulation play a critical role in these events. Finally, the nude mice xenograft study showed that CYT-Rx20 significantly reduced tumor growth of implanted colorectal cancer cells accompanied by elevated protein expression of aurora A, aurora B, γH2AX, phosphor-ERK, and MDA in the tumor tissues. Taken together, these results suggest that CYT-Rx20 may potentially be developed as a novel ß-nitrostyrene-based anticancer agent for colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Estirenos/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio Cometa , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Gynecol Cancer ; 27(7): 1306-1317, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-30814237

RESUMO

OBJECTIVE: The ß-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of ß-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a ß-nitrostyrene derivative CYT-Rx20 (3'-hydroxy-4'-methoxy-ß-methyl-ß-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated. METHODS: The effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, ß-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo. RESULTS: CYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers ß-catenin and Twist. CONCLUSIONS: CYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


Assuntos
Quebras de DNA de Cadeia Dupla , Estresse Oxidativo/efeitos dos fármacos , Estirenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Life Sci ; 172: 19-26, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007499

RESUMO

AIMS: Members of the ß-nitrostyrene family are known to suppress tumor growth, with the underlying mechanisms of ß-nitrostyrene remain mostly unclear. Herein, we synthesized a ß-nitrostyrene derivative, 3'-hydroxy-4'-methoxy-ß-methyl-ß-nitrostyrene (CYT-Rx20), and explored its anticancer activities in human lung cancer cells in vitro and in vivo. MAIN METHODS: Cell viability was measured by XTT assay. Apoptosis was detected by Annexin V/PI staining. Caspase activation was determined by western blotting. ROS (reactive oxygen species), MMP (mitochondrial membrane potential) and mitochondrial mass were determined by flow cytometry. GSH level was detected by ELISA assay. KEY FINDINGS: In this study, we found that CYT-Rx20 significantly reduced cell viability, accompanied by G2/M arrest in lung cancer cells. Increased protein levels of cleaved-caspase families indicated apoptotic cell death upon CYT-Rx20 treatment. Furthermore, increased level of intracellular reactive oxygen species (ROS), loss of mitochondrial membrane potential (ΔΨm), glutathione (GSH) depletion and inhibition of GSH reductase were observed after CYT-Rx20 treatment. The effects of CYT-Rx20 on cell viability and the loss of ΔΨm were significantly reversed when cells were pretreated with thiol antioxidants NAC, GSH, or 2-ME. Finally, xenograft animal study demonstrated that CYT-Rx20 significantly suppressed lung tumor growth in vivo. SIGNIFICANCE: Our data demonstrated that CYT-Rx20 triggered apoptotic cell death in lung cancer cells and suppressed lung tumor growth through GSH depletion, suggesting that CYT-Rx20 may have the potential to be further developed as an anticancer compound for treating lung cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Estirenos/farmacologia , Animais , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
17.
PLoS One ; 11(11): e0166453, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27875549

RESUMO

The ß-nitrostyrene family have been implicated for anti-cancer property. However, the pharmacological role of ß-nitrostyrene in esophageal cancer remain unclear. Here, a ß-nitrostyrene derivative, CYT-Rx20, was synthesized and assessed for its anti-cancer activities and underlying mechanism in esophageal cancer. CYT-Rx20 induced cytotoxicity in esophageal cancer cells by promoting apoptosis through activation of caspase cascade and poly(ADP-ribose) polymerase (PARP) cleavage. Besides, CYT-Rx20 inhibited esophageal cancer cell migration and invasion by regulating the expression of epithelial to mesenchymal transition (EMT) markers. CYT-Rx20 decreased cell viability and migration through suppression of the PI3K/AKT and STAT3 pathways. Of note, the cytotoxicity and anti-migratory effect of CYT-Rx20 were enhanced by co-treatment with SC79 (AKT activator) or colivelin (STAT3 activator), suggesting the dependency of esophageal cancer cells on AKT and STAT3 for survival and migration, an oncogene addiction phenomenon. In xenograft tumor-bearing mice, CYT-Rx20 significantly reduced tumor growth of the implanted esophageal cancer cells accompanied by decreased Ki-67, phospho-AKT, and phospho-STAT3 expression. In orthotopic esophageal cancer mouse model, decreased tumor growth and lung metastasis with reduced Ki-67 and phospho-STAT3 expression were observed in mice treated with CYT-Rx20. Together, our results suggest that CYT-Rx20 is a potential ß-nitrostyrene-based anticancer compound against the tumor growth and metastasis of esophageal cancer.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/biossíntese , Transdução de Sinais/efeitos dos fármacos , Estirenos/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Lett ; 371(2): 251-61, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26683774

RESUMO

The ß-nitrostyrene family has been shown to suppress cancer cell proliferation and induce programmed cell death. However, mechanisms underlying ß-nitrostyrenes remain less evaluated. Here, we synthesized a ß-nitrostyrene derivative, CYT-Rx20, and characterized its anticancer effect and involving mechanisms in breast cancer. We found that CYT-Rx20 arrested breast cancer cells at G2/M phase and decreased cell viability by activating the caspase cascade, accompanying with increases of poly (ADP-ribose) polymerase (PARP) cleavage and γ-H2AX expression. On the other hand, up-regulation of Beclin-1, ATG5, and LC-3 was observed in CYT-Rx20-induced autophagy, which was evidently shown by transmission electron microscopy. In addition to these, CYT-Rx20-induced breast cancer cell death, intracellular reactive oxygen species (ROS) formation and expression of phospho-ERK1/2, Beclin-1, and LC-3 were significantly reversed in the presence of N-acetyl-l-cysteine (NAC), a thiol antioxidant. Furthermore, the cytotoxicity of CYT-Rx20 was enhanced by co-treatment with the autophagy inhibitor chloroquine or bafilomycin A1, suggesting that an incomplete autophagy process could deteriorate CYT-Rx20-induced cytotoxicity. In nude mice xenograft study, CYT-Rx20 significantly reduced orthotopic tumor growth. Immunohistochemical analysis revealed elevated expression of phospho-ERK1/2 and LC-3 in tumor tissues of the mice treated with CYT-Rx20. Together, we propose that CYT-Rx20 may have potential to be further developed into a ß-nitrostyrene-based anticancer compound for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estirenos/farmacologia , Animais , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Neoplasias da Mama/enzimologia , Neoplasias da Mama/ultraestrutura , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Life Sci ; 143: 147-55, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546721

RESUMO

AIMS: The interactions between cancer cells and platelets have been recognized to play an important role in cancer progress as well as metastasis, and interference with cancer-platelet interactions is an attractive strategy for cancer therapy. In the present study, two ß-nitrostyrene derivatives: 3, 4-methylene-dioxy-ß-nitrostyrene (MNS) and 4-O-benzoyl-3-methoxyl-ß-nitrostyrene (BMNS) have been tested for their inhibitory effect on platelet activation caused by metastatic human breast cancer MDA-MB-231 and Hs578T cells. MAIN METHODS: Washed human platelets were co-incubated with breast cancer cells, and platelet aggregation was determined turbidimetrically. Platelet adhesion to cancer cells and P-selectin expression were measured by flow cytometry. Platelet-derived growth factor (PDGF) released from cancer cell-stimulated platelets was determined by enzyme-linked immunosorbent assay (ELISA). KEY FINDINGS: MNS and BMNS prevented cancer cell-induced platelet aggregation, P-selectin expression, and PDGF secretion. Moreover, the ß-nitrostyrenes reduced platelet adhesion to cancer cells, suggesting the initial cancer-platelet interactions are inhibited. In contrast to current antiplatelet strategies, the glycoprotein IIb/IIIa (GPIIb/IIIa) antagonist RGDS peptide only prevented cancer cells-induced platelet aggregation, but not platelet adhesion and secretion; whereas the cyclooxygenase inhibitor aspirin and the adenosine diphosphate (ADP) scavenger apyrase affected neither platelet aggregation nor platelet secretion. SIGNIFICANCE: The inhibitory effects of the ß-nitrostyrene derivatives on cancer-platelet interactions may offer a potential approach for repressing cancer metastasis.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Neoplasias da Mama/metabolismo , Estirenos/química , Estirenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Estirenos/uso terapêutico
20.
Oncotarget ; 6(40): 42733-48, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26528756

RESUMO

Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCµ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective.


Assuntos
Plaquetas/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Nitrobenzoatos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Plaquetas/metabolismo , Western Blotting , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Invasividade Neoplásica/patologia , Agregação Plaquetária/fisiologia , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA