Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Drug Dev Res ; 84(4): 767-776, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37005497

RESUMO

Our previous studies have shown that the plasminogen activator (PA) and matrix metalloproteinases (MMPs) proteinase systems were highly expressed in highly malignant liver cancer cells and regulated by PKCα. This study investigates whether the PKCα regulation of PA and MMPs systems is conducted through p38 mitogen-activated protein kinase (MAPK) signaling and the pathway is responsible for promoting cell progression. We found that the expressions of p38 MAPK in both highly malignant HA22T/VGH and SK-Hep-1 liver cancer cells were higher than that in other lower malignancy liver cancer cells. Since PKCα activates p38 MAPK in progression of liver cancer, we suspected the PKCα/p38 MAPK signaling pathway to be involved in the regulation of MMPs and PA systems. When SK-Hep-1 cells were treated with SB203580 or DN-p38, only MMP-1 and u-PA mRNA expressions decreased. The p38 MAPK inhibition also decreased the cell migration and invasion. In addition, the mRNA decay assays showed that the higher expressions of MMP-1 and u-PA mRNA in SK-Hep-1 cells were due to the alteration of mRNA stability by p38 MAPK inhibition. Zymography of SK-Hep-1 cells treated with siPKCα vector also showed the decrease of the activity of MMP-1 and u-PA and confirmed changes in mRNA level. Furthermore, only the transfection of MKK6 to the siPKCα-treated SK-Hep-1 stable clone cell restored the attenuation of MMP-1 and u-PA expressions. The treatment of SK-Hep-1 cells with either inhibitor of MMP-1 or u-PA reduced migration, and the reduction was enhanced with both inhibitors. In addition, tumorigenesis was also reduced with both inhibitors. These data suggest a novel finding that MMP-1 and u-PA are critical components in PKCα/MKK6/p38 MAPK signaling pathway which mediates liver cancer cell progression, and that the targeting of both genes may be a viable approach in liver cancer treatment.


Assuntos
Neoplasias Hepáticas , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteína Quinase C-alfa , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Neoplasias Hepáticas/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral
3.
Front Pharmacol ; 13: 963589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238547

RESUMO

Background: Melanoma is a highly aggressive, lethal, and malignant cancer. Once diagnosed early, it can be easily removed and cured with satisfaction. Although many methods such as surgery, chemotherapy, radiotherapy, and immunotherapy have been used to treat this disease at an advanced stage, the outcomes are poor. Terminalia catappa leaves have been shown to have various biological benefits, including antitumor activity. The specific effects and molecular mechanisms of Terminalia catappa leaf in treating A2058 and A375 melanoma cells in vitro need to be clarified. Methods: The A2058 and A375 melanoma cancer cells were treated with Terminalia catappa leaf extracts, and then the effect of Terminalia catappa leaf extracts on migration and invasion was examined. The cell migration/invasion capacities of A2058 and A375 cells were investigated by a modified Boyden chamber assay. Zymography was used to clarify the activities of matrix metalloproteinases-2 and urinary type plasminogen activator. We performed a Western blot to verify the related expression of phospho-Src (Tyr416), phospho-Focal adhesion kinase (Tyr397), Vimentin, and ß-catenin. Results: Modified Boyden chamber assays demonstrated that treatment of Terminalia catappa leaf extracts significantly inhibited A2058 and A375 cell migration/invasion capacities. In the zymography results, we showed that Terminalia catappa leaf extracts negatively modulated the activities of matrix metalloproteinases-2 and urinary type plasminogen activator. Western blot indicated that Terminalia catappa leaf extracts reduced the expression of phospho-Src (Tyr416), phospho-Focal adhesion kinase (Tyr397), Vimentin, and ß-catenin. Conclusion: Terminalia catappa leaf extracts affected the antimetastasis of the A2058 and A375 melanoma cell lines by inhibiting the Focal adhesion kinase/Src interaction and Wingless-int1/ß-catenin pathways in vitro. Terminalia catappa leaf extracts may serve as an effective chemopreventive agent against metastasis of melanoma cancer.

4.
Food Funct ; 13(12): 6574-6582, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35678522

RESUMO

Cancer metastasis is the major cause of the high mortality risk of patients with osteosarcoma. Cinnamaldehyde has been shown to exhibit multiple tumour-suppressing activities, but its role in human osteosarcoma is not yet completely defined. In this study, the antimetastatic effect of cinnamaldehyde on highly metastatic human osteosarcoma cells was observed in vitro and in vivo using Saos-2 and 143B cells. Cinnamaldehyde reduced the activity and protein level of urokinase-type plasminogen activator (u-PA) and suppressed the invasion ability of osteosarcoma cells by inhibiting the phosphorylation of focal adhesion kinase. In addition, cinnamaldehyde reduced cell movement, cell-matrix adhesion, and the expression of the mesenchymal markers of epithelial-to-mesenchymal transition, namely, fibronectin and N-cadherin. Importantly, the oral administration of cinnamaldehyde remarkably suppressed the pulmonary metastasis of osteosarcoma in mice. Results indicated that cinnamaldehyde has therapeutic potential for inhibiting osteosarcoma metastasis.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Transdução de Sinais , Acroleína/análogos & derivados , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
Front Oncol ; 12: 846760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311079

RESUMO

Background: Comorbidities and stages may influence the prognosis of melanoma patients in Taiwan and need to be determined. Methods: We performed a retrospective cohort study by using the national health insurance research database in Taiwan. Patients with a primary diagnosis of melanoma by the Taiwan Cancer Registry from 2009 to 2017 were recruited as the study population. The comparison group was never diagnosed with melanoma from 2000 to 2018. The Charlson comorbidity index was conducted to calculate the subjects' disease severity. The Cox proportional hazards model analysis was used to estimate the hazard ratio of death. Results: We selected 476 patients, 55.5% of whom had comorbidity. A higher prevalence of comorbidity was associated with a more advanced cancer stage. The mortality rate increased with an increasing level of comorbidity in both cohorts and was higher among melanoma patients. The interaction between melanoma and comorbidity resulted in an increased mortality rate. Conclusion: An association between poorer survival and comorbidity was verified in this study. We found that the level of comorbidity was strongly associated with mortality. A higher risk of mortality was found in patients who had localized tumors, regional metastases, or distant metastases with more comorbidity scores. Advanced stage of melanoma patients with more comorbidities was significantly associated with the higher risk of mortality rate.

6.
Environ Toxicol ; 37(6): 1261-1274, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146896

RESUMO

Cinnamomum cassia possesses antioxidative activity and induces the apoptotic properties of various cancer types. However, its effect on osteosarcoma invasion and cancer stemness remains ambiguous. Here, we examined the molecular evidence of the anti-invasive effects of ethanoic C. cassia extracts (CCE). Invasion and migration were obviously suppressed after the expression of urokinase-type plasminogen activator and matrix metalloprotein 2 in human osteosarcoma 143B cells were downregulated. CCE reversed epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor ß1 and downregulated mesenchymal markers, such as snail-1 and RhoA. CCE suppressed self-renewal property and the expression of stemness genes (aldehyde dehydrogenase, Nanog, and CD44) in the 143B cells. CCE suppressed cell viability, reduced the colony formation of osteosarcoma cancer cells, and induced apoptotic cell death in the 143B cells, as indicated by caspase-9 activation. The xenograft tumor model of immunodeficient BALB/c nude mice showed that CCE administered in vivo through oral gavage inhibited the growth of implanted 143B cells. These findings indicated that CCE inhibited the invasion, migration, and cancer stemness of the 143B cells. CCE reduced proliferation of 143B cell possibly because of the activation of caspase-9 and the consequent apoptosis, suggesting that CCE is a potential anticancer supplement for osteosarcoma.


Assuntos
Neoplasias Ósseas , Cinnamomum aromaticum , Osteossarcoma , Animais , Apoptose , Neoplasias Ósseas/patologia , Caspase 9/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Camundongos Nus , Osteossarcoma/patologia , Extratos Vegetais/farmacologia
7.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832965

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive and common types of brain tumor. Due to its high proliferation ability, a high lethality rate has been observed with this malignant glial tumor. Terminalia catappa L. (T. catappa) is currently known to have anti-inflammatory and anti-carcinogenesis effects. However, few studies have examined the mechanisms of the leaf extracts of T. catappa (TCE) on GBM cells. In the current study, we demonstrated that TCE can significantly inhibit the migration and invasion capabilities of GBM cell lines without showing biotoxic effects. Matrix metalloproteinases-2 (MMP-2) activity and protein expression were attenuated by reducing the p38 phosphorylation involved in the mitogen-activated protein kinase (MAPK) pathway. By treating with TCE and/or p38 inhibitor (SB203580), we confirmed that p38 MAPK is involved in the inhibition of cell migration. In conclusion, our results demonstrated that TCE inhibits human GBM cell migration and MMP-2 expression by regulating the p38 pathway. These results reveal that TCE contains potent therapeutic compounds which could be applied for treating GBM brain tumors.

8.
Am J Chin Med ; 49(1): 181-198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33371817

RESUMO

Metastasis is the most prevalent cause of cancer-associated deaths amongst patients with cervical cancer. Epithelial-mesenchymal transition (EMT) is essential for carcinogenesis, and it confers metastatic properties to cancer cells. Gossypol is a natural polyphenolic compound with anti-inflammation, anti-oxidant, and anticancer activities. In this study, we investigated the antimetastatic and antitumour effects of gossypol on human cervical cancer cells (HeLa and SiHa cells). Gossypol exerted a strong inhibition effect on the migration and invasion of human cervical cancer cells. It reduced the focal adhesion kinase (FAK) pathway-mediated expression of matrix metalloproteinase-2 and urokinase-type plasminogen activator, subsequently inhibiting the invasion of SiHa cells. In addition, gossypol reversed EMT induced by transforming growth factor beta 1 (TGF-[Formula: see text]1) and up-regulated epithelial markers, such as E-cadherin but significantly suppressed Ras homolog family member (Rho)A, RhoB, and p-Samd3. The tail vein injection model showed that gossypol treatment via oral gavage reduced lung metastasis. Gossypol also decreased tumour growth in vivo in the nude mouse xenograft model. All these findings suggest that gossypol suppressed the invasion and migration of human cervical cancer cells by targeting the FAK signaling pathway and reversing TGF-[Formula: see text]1-induced EMT. Hence, gossypol warrants further attention for basic mechanistic studies and drug development.


Assuntos
Antineoplásicos Fitogênicos , Transição Epitelial-Mesenquimal , Gossipol/farmacologia , Gossipol/uso terapêutico , Metástase Neoplásica/prevenção & controle , Peptídeo Hidrolases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/etiologia , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Gossipol/administração & dosagem , Células HeLa , Xenoenxertos , Humanos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Fitoterapia , Neoplasias do Colo do Útero/patologia
9.
Cells ; 9(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183030

RESUMO

Epithelial-mesenchymal transition (EMT) is strongly correlated with tumor metastasis and contains several protein markers, such as E-cadherin. Carbonic anhydrase III (CA III) exhibits low carbon dioxide hydratase activity in cancer. However, the detailed mechanisms of CA III and their roles in oral cancer are still unknown. This study established a CA III-overexpressed stable clone and observed the expression of CA III protein in human SCC-9 and SAS oral cancer cell lines. The migration and invasion abilities were determined using a Boyden chamber assay. Our results showed that the overexpression of CA III protein significantly increased the migration and invasion abilities in oral cancer cells. Moreover, a whole genome array analysis revealed that CA III regulated epithelial-mesenchymal transition by reducing the expression of epithelial markers. Data from the GEO database also demonstrated that CA III mRNA is negatively correlated with CDH1 mRNA. Mechanistically, CA III increased the cell motility of oral cancer cells through the FAK/Src signaling pathway. In conclusion, this suggests that CA III promotes EMT and cell migration and is potentially related to the FAK/Src signaling pathway in oral cancer.


Assuntos
Anidrase Carbônica III/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Anidrase Carbônica III/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Fatores de Transcrição/genética , Quinases da Família src/metabolismo
10.
Food Funct ; 10(12): 8172-8181, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730141

RESUMO

Metastasis is the most prevalent cause of treatment failure in patients with colon cancer. Gossypol is reported to exhibit antioxidant, anticancer, antivirus and antimicrobial properties. However, the effects of gossypol on cancer invasion and tumour growth of human colon cancer remain unclear. This study aimed to provide molecular evidence associated with the antimetastatic and anti-tumour effects of gossypol on human colorectal carcinoma (CRC) cells. Gossypol inhibited the viability of human colon cancer cells in a dose-dependent manner. Gossypol was sufficient to reduce the invasion, migration and adhesion in DLD-1 and COLO 205 cells. Zymography and western blot assay showed that gossypol reduced the activities and protein expression of urokinase-type plasminogen activator (u-PA), respectively. Gossypol suppressed the level of p-focal adhesion kinase (FAK) and epithelial-to-mesenchymal transition markers, including N-cadherin, fibronectin and vimentin. Gossypol also inhibited the lung metastasis of DLD-1 cells, as indicated by the nude mouse model. These results suggested that gossypol inhibited the metastatic properties of human colon cancer cells by targeting u-PA through the FAK pathway, suggesting that gossypol could be used as an adjuvant therapeutic agent for the treatment of human colon cancer cells.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Gossipol/administração & dosagem , Neoplasias Pulmonares/prevenção & controle , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibronectinas/genética , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Ativador de Plasminogênio Tipo Uroquinase/genética , Vimentina/genética , Vimentina/metabolismo
11.
Environ Toxicol ; 34(11): 1208-1220, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31298468

RESUMO

Thymoquinone is a phytochemical compound isolated from Nigella sativa and has various biological effects, including anti-inflammation, antioxidation, and anticancer. Here, we further investigated the anticancer effects and associated molecular mechanism of 2-methyl-5-isopropyl-1,4-benzoquinone (thymoquinone) on human renal carcinoma cell lines 786-O and 786-O-SI3 and transitional carcinoma cell line BFTC-909. Results showed that thymoquinone significantly reduced cell viability, inhibited the colony formation of renal cancer cells, and induced cell apoptosis and mitochondrial membrane potential change in both cancer cells. In addition, thymoquinone also triggered the production of reactive oxygen species (ROS) and superoxide and the activation of apoptotic and autophagic cascade. ROS inhibition suppressed the caspase-3 activation and restored the decreased cell viability of 786-O-SI3 in response to thymoquinone. Autophagy inhibition did not restore the cell viability of 786-O-SI3 suppressed by thymoquinone. Moreover, thymoquinone suppressed the cell sphere formation and the expression of aldehyde dehydrogenase, Nanog, Nestin, CD44, and Oct-4 in 786-O-SI3 cells. The tumor-bearing model showed that thymoquinone in vivo inhibited the growth of implanted 786-O-SI3 cell. All these findings indicate that thymoquinone inhibits the proliferation of 786-O-SI3 and BFTC-909 cell possibly due to the induction of ROS/superoxide and the consequent apoptosis, suggesting that thymoquinone may be a potential anticancer supplement for genitourinary cancer.


Assuntos
Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo
12.
Phytomedicine ; 63: 152960, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31280137

RESUMO

BACKGROUND: Duchesnea indica (Andr.) Focke, an herb in folk medicine used extensively in traditional Chinese medicine, has cytostatic properties as well as antioxidant and antimetastasis activities in various cancer cells. However, the effects and underlying mechanisms of Duchesnea indica extracts (DIEs) on human oral squamous cell carcinoma (OSCC) metastases remain unclear. PURPOSE: In this study, we posit the hypothesis that DIE possesses antimetastatic effects on human OSCC cells. METHODS: The effects of DIE on cell viability, motility, migration, and invasion were investigated. Gelatin zymography, Western blotting, migration and invasion assays were used to further study the underlying mechanisms involved in the antimetastatic effects of DIE in OSCC cells. RESULTS: The results from MTT assay revealed that DIE did not affect the cell viability of OSCC cells. Moreover, DIE significantly attenuated OSCC cells' motility, migration, and invasion by reducing the MMP-2 protein expression and MMP-2 activity in a dose-dependent manner. In addition, DIE reduced the phosphorylation of both ERK1/2 and its upstream kinase but had no effect on the phosphorylation of p38 and JNK. CONCLUSION: DIE triggers the antimetastatic activity in OSCC cells by suppressing the MMP-2 activity via the MEK/ERK signaling pathways. Therefore, these findings are promising for the use of DIE antimetastatic activity in oral cancer metastasis treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias Bucais/tratamento farmacológico , Rosaceae/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia
13.
Int J Med Sci ; 16(5): 686-695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31217736

RESUMO

Phytochemicals represent an important source of novel anticancer and chemotherapeutic agents. Thymoquinone (TQ) is the major bioactive phytochemical derived from the seeds of Nigella sativa and has shown potent anticancer activities. In this study, we aimed to investigate the anticancer activity of Thymoquinone on the human renal carcinoma cell 786-O-SI3 and the underlying mechanism. By using cell proliferation assay, wound healing, and invasion assay, we found that Thymoquinone did not affect the viability of 786-O-SI3 and human kidney-2, but clearly inhibited the migration and invasion of 786-O-SI3. Further zymography and immunoblotting analysis showed that Thymoquinone downregulated the activity and expression of matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (u-PA) and attenuated the adhesion of 786-O-SI3 to type I and type IV collagen. Kinase cascade assay indicated that Thymoquinone inhibited the phosphorylation of phosphatidylinositol 3-kinase, Akt, Src, and Paxillin. In addition, Thymoquinone also decreased the level of fibronectin, N-cadherin, and Rho A. In parallel, Thymoquinone dose-dependently suppressed the transforming growth factor (TGF)-ß-promoted u-PA activity and expression, as well as the cell motility and invasion of 786-O-SI3. Furthermore, tumor xenograft model revealed that Thymoquinone in vivo inhibited the 786-O-SI3 metastasizing to the lung. Collectively, these findings indicate that Thymoquinone inhibits the metastatic ability of 786-O-SI3, suggesting that Thymoquinone might be beneficial to promote the chemotherapy for renal cell carcinoma.


Assuntos
Benzoquinonas/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Metaloproteinase 2 da Matriz/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo IV/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/genética
14.
J Cell Physiol ; 234(4): 5289-5303, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317581

RESUMO

Cinnamomum cassia has been widely studied in different fields to reveal its antidiabetic, antidepressive, antiviral, anti-inflammatory, antiosteoporotic, and anticancer effects. Its antimalignant activities have been explored in lung cancer, breast cancer, colorectal cancer, and even oral cancer, but the detailed signaling mechanism and effects of this plant on animal models need to be clarified. In the current study, C. cassia extract (CCE) was used to investigate the antitumorigenesis mechanism in vitro and in vivo. The major constituents of CCE used in this study were coumarin, cinnamic acid, and cinnamic aldehyde. CCE reduced the viability, number, and colony formation of human oral cancer cells, and induced their apoptosis. Caspase-3 activation, Bcl-2 reduction, and phosphatidylserine inversion were involved in CCE-stimulated apoptosis. CCE also enhanced the expression of autophagic markers, including acidic vesicular organelle, microtubule-associated protein 1 light chain 3-I, autophagy-related protein 14, rubicon, and p62. The combined treatment of CCE and caspase inhibitor significantly restored mitochondrial membrane potential (Δ ψ m ) and cell viability. However, the combined treatment of CCE and autophagy inhibitor further reduced the cell viability indicating that autophagy might be a survival pathway of CCE-treated SASVO3 cells. In contrast, CCE treatment for 12 days did not adversely affect SASVO3 tumor-bearing nude mice. CCE also elicited dose-dependent effects on the decrease in tumor volume, tumor weight, and Ki-67 expression. These results suggested that CCE showed the potential for the complementary treatment of oral caner.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cinnamomum aromaticum/química , Neoplasias Bucais/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas Relacionadas à Autofagia/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Med Sci ; 15(4): 280-290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511364

RESUMO

Cancer metastasis is a vital trait in malignancies with complicated early diagnosis and therapeutic management. Therefore, the development of new remedies and the utilization of natural medicines that target metastasis are of great interest and have been studied extensively. Chinese medicinal herbs have various anti-carcinogenesis properties; however, the in vitro effect and mechanism of Viola yedoensis on cancer cell metastasis remains poorly understood. V. yedoensis extracts (VYE) can suppress the invasion of a highly metastatic human lung cancer cell line, A549 cells. According to gelatin zymography and casein zymography assays, VYE inhibited the activities of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (u-PA). The results of reverse transcription-polymerase chain reaction and Western blotting revealed that VYE can alter the expression of proteinase inhibitor. VYE also suppressed the DNA binding activity of nuclear factor-kappa B. We concluded that VYE may inhibit tumor invasion by suppressing the activities of MMP and u-PA in lung cancer cells.


Assuntos
Carcinoma Pulmonar de Lewis/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Invasividade Neoplásica/genética , Células A549 , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinases da Matriz/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Peptídeo Hidrolases/genética , Ratos , Ativador de Plasminogênio Tipo Uroquinase/genética
16.
Int J Med Sci ; 15(2): 115-123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333095

RESUMO

Cinnamomum cassia exhibits antioxidative, apoptotic, and cytostatic properties. These activities have been attributed to the modulation of several biological processes and are beneficial for possible pharmaceutical applications. However, the potential of C. cassia in retarding lung adenocarcinoma cells metastasis remains ambiguous. We determined whether C. cassia extract (CCE) reduces metastasis of human lung adenocarcinoma cells. The results showed that CCE treatment (up to 60 µg/mL) for 24 h exhibited no cytotoxicity on the A549 and H1299 cell lines but inhibited the motility, invasiveness, and migration of these cells by repressing matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (u-PA). CCE also impaired cell adhesion to collagen. CCE significantly reduced p-focal adhesion kinase (FAK) Tyr397, p-FAK Tyr925, p-extracellular signal-regulated kinases (ERK)1/2, and Ras homolog gene family (Rho)A expression. CCE showed anti-metastatic activity of A549 and H1299 cells by repressing u-PA/MMP-2 via FAK to ERK1/2 pathways. These findings may facilitate future clinical trials of lung adenocarcinoma chemotherapy to confirm the promising results.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cinnamomum aromaticum/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Extratos Vegetais/farmacologia , Células A549 , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colágeno , Quinase 1 de Adesão Focal/metabolismo , Gelatina , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz , Fosforilação/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Int J Med Sci ; 14(10): 984-993, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28924370

RESUMO

Kaempferol, which is isolated from several natural plants, is a polyphenol belonging to the subgroup of flavonoids. Kaempferol exhibits various pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. In this study, kaempferol can significantly inhibit the invasion and migration of 786-O renal cell carcinoma (RCC) without cytotoxicity. We examined the potential mechanisms underlying its anti-invasive activities on 786-O RCC cells. Western blot was performed, and the results showed that kaempferol attenuates the manifestation of metalloproteinase-2 (MMP-2) protein and activity. The inhibitive effect of kaempferol on MMP-2 may be attributed to the downregulation of phosphorylation of Akt and focal adhesion kinase (FAK). By examining the SCID mice model, we found that kaempferol can safely inhibit the metastasis of the 786-O RCC cells into the lungs by about 87.4% as compared to vehicle treated control animals. In addition, the lung tumor masses of mice pretreated with 2-10 mg/kg kaempferol were reduced about twofold to fourfold. These data suggested that kaempferol can play a promising role in tumor prevention and cancer metastasis inhibition.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Quempferóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/secundário , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Quempferóis/uso terapêutico , Neoplasias Renais/patologia , Neoplasias Pulmonares/secundário , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos SCID , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Am J Chin Med ; 45(7): 1557-1572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28946771

RESUMO

Nasopharyngeal carcinoma (NPC) is characterized by a high incidence of metastasis in the neck lymph nodes, resulting in a poor prognosis and posing challenges for treatment. In this study, we investigated the in vitro antimetastatic properties of Rubus idaeus extract (RIE) on human nasopharyngeal carcinoma cells. HONE-1, NPC-39 and NPC-BM cells were subjected to RIE treatment, and effects on the migration and invasion of tumor cells were analyzed. The results showed that RIE suppressed the migration and invasion of NPC cells. Gelatin zymography assay, Western blotting and real-time PCR showed that matrix metalloproteinases-2 (MMP-2) enzyme activity, protein expression and mRNA levels were down-regulated by RIE treatment. To identify the signaling pathway, mitogen-activated protein kinase proteins were examined, which showed that phosphorylation of ERK1/2 was inhibited after the treatment of RIE. In summary, our data showed that RIE inhibited the migration and invasion of NPC cells by suppressing the expression of MMP-2 by down-regulating the ERK1/2 signaling pathway, suggesting that Rubus idaeus may serve as chemotherapeutic and chemopreventive agent for NPC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma/patologia , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias Nasofaríngeas/patologia , Extratos Vegetais/farmacologia , Rubus/química , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma/tratamento farmacológico , Carcinoma/genética , Carcinoma/prevenção & controle , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Linfática/prevenção & controle , Metaloproteinase 2 da Matriz/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/prevenção & controle , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fitoterapia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Environ Toxicol ; 32(10): 2287-2294, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28678381

RESUMO

Rheum palmatum L., a traditional Chinese medication, has been used for the treatment of various disorders. However, the detailed impacts and underlying mechanisms of R. palmatum L. extracts (RLEs) on human oral cancer cell metastasis are still unclear. Here, we tested the hypothesis that an RLE has antimetastatic effects on SCC-9 and SAS human oral cancer cells. Gelatin zymography, Western blot, real-time polymerase chain reaction, and luciferase assay were used to explore the underlying mechanisms involved in the antimetastatic effects on oral cancer cells. Our results revealed that the RLE (up to 20 µg/mL, without cytotoxicity) attenuated SCC-9 and SAS cell motility, invasiveness, and migration by reducing matrix metalloproteinase (MMP)-2 enzyme activities. Western blot analysis of the MAPK signaling pathway indicated that the RLE significantly decreased phosphorylated ERK1/2 levels but not p38 and JNK levels. In conclusion, RLEs exhibit antimetastatic activity against oral cancer cells through the transcriptional repression of MMP-2 via the Erk1/2 signaling pathways. Thus, RLEs may be potentially useful as antimetastatic agents for oral cancer chemotherapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Bucais/tratamento farmacológico , Rheum/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA