Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 130912, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821424

RESUMO

Addressing geogenic and anthropogenic arsenic (As) pollution is critical for environmental health. This study explored arsenite [As(III)] removal using Cyanidiales, particularly Cyanidium caldarium (Cc) and Galdieria partita (Gp), under acidic to neutral pH, and determined As(III) detoxification mechanisms in relation to As speciation and protein secondary structure in Cyanidiales. Regarding As(III) sorption amounts, Cc outperformed Gp, reaching 83.2 mg g-1 of removal at pH 5.0. Wherein, 23.5 % of sorbed As on Cc presented as arsenate [As(V)] complexation with polysaccharides, alongside other predominant species including As(III)-cysteine (41.2 %) and As(III)-polysaccharides (35.3 %) complexes. This suggested that As(III) was directly transported into cells, rather than As(V). Coupled with the formation of As(III)-cysteine complexes within cells, these mechanisms may be key to efficiently accumulating As(III) in Cyanidiales during the 6-h incubation. These results highlight the potential of Cyanidiales for sustainable As(III) remediation and provide new insights into managing As(III) toxicity.

2.
Nat Commun ; 15(1): 911, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291043

RESUMO

Developing atomically synergistic bifunctional catalysts relies on the creation of colocalized active atoms to facilitate distinct elementary steps in catalytic cycles. Herein, we show that the atomically-synergistic binuclear-site catalyst (ABC) consisting of [Formula: see text]-O-Cr6+ on zeolite SSZ-13 displays unique catalytic properties for iso-stoichiometric co-conversion of ethane and CO2. Ethylene selectivity and utilization of converted CO2 can reach 100 % and 99.0% under 500 °C at ethane conversion of 9.6%, respectively. In-situ/ex-situ spectroscopic studies and DFT calculations reveal atomic synergies between acidic Zn and redox Cr sites. [Formula: see text] ([Formula: see text]) sites facilitate ß-C-H bond cleavage in ethane and the formation of Zn-Hδ- hydride, thereby the enhanced basicity promotes CO2 adsorption/activation and prevents ethane C-C bond scission. The redox Cr site accelerates CO2 dissociation by replenishing lattice oxygen and facilitates H2O formation/desorption. This study presents the advantages of the ABC concept, paving the way for the rational design of novel advanced catalysts.

3.
Chem Commun (Camb) ; 59(64): 9774-9777, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486167

RESUMO

S-Nitrosothiols (SNOs) serve as endogenous carriers and donors of NO within living cells, releasing nitrosonium ions (NO+), NO, or other nitroso derivatives. In this study, we present a bioinspired {Co(NO)2}10 complex 1 that achieved S-nitrosation towards Cys residues. The incorporation of a ferrocenyl group in 1 allowed for fine-tuning of the nitrosation reaction, taking advantage of the redox ability of Cys residues. Complex 1 was synthesized and characterized, demonstrating its NO translation reactivity. Furthermore, complex 1 successfully converted Cys into S-nitrosocysteine (Cys-SNO), as confirmed by UV-Vis, IR, and XAS spectroscopy. This study presents a promising approach for S-nitrosation of Cys residues for further exploration in the modification of Cys-containing peptides.


Assuntos
Cisteína , S-Nitrosotióis , Nitrosação , Cisteína/química , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Óxido Nítrico/química , Oxirredução
4.
Sci Rep ; 8(1): 10363, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985471

RESUMO

Precipitation of Fe-hydroxide (FH) critically influences the sequestration of PO4 and organic matter (OM). While coatings of pre-sorbed OM block FH surfaces and decrease the PO4 adsorption capacity, little is known about how OM/Fe coprecipitation influences the PO4 adsorption. We aimed to determine the PO4 adsorption behaviors on humic acid (HA)-Fe coprecipitates in relation to surface and structural characteristics as affected by HA types and C/(C + Fe) ratios using the Fe and P X-ray absorption spectroscopy. With increasing C/(C + Fe) ratios, the indiscernible changes in the proportion of near-surface C for coprecipitates containing HA enriched in polar functional groups implied a relatively homogeneous distribution between C and Fe domains. Wherein PO4 adsorbed on FH dominated the P inventory on coprecipitates, yielding PO4 sorption properties nearly equivalent to that of pure FH. Structural disruptions of FH caused by highly associations with polar functional groups of HA enhanced the C solubilisation. While polar functional groups were limited, coprecipitates consisted of core FH with surface outgrowth of HA. Although surface-attached HA that was vulnerable to solubilisation provided alternatively sites for PO4 via ternary complex formation with Fe bridges, it also blocked FH surfaces, leading to a decrease in PO4 adsorption.

5.
Chemosphere ; 200: 1-7, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29471163

RESUMO

Arsenic remediation is often initiated by oxidizing As(III) to As(V) to alleviate its toxicity and mobility. Due to the easy availability, zero-valent Al (ZVAl) like Al can was considered as potential alternatives to facilitate As(III) oxidation. This study determined the capability and recycling of polyoxometalate (POM) to catalyze As(III) oxidation in Fe(II)-amended ZVAl systems. POM acquired electrons from ZVAl more effectively at pH 1 than at pH 2. While 76% of the reduced POM [POM(e-)] reacted with O2(g) to generate H2O2 at pH 1, only 60% of POM(e-) was used to produce H2O2 at pH 2. The remaining POM(e-) was oxidized by the generated H2O2. Such additional consumption of POM(e-) and H2O2 led to the incomplete As(III) oxidation in the system without residual ZVAl and emphasized the need for a continuous electron supply from ZVAl to compensate the depletion of POM(e-). After the hydrolyzation at pH 6.0, the XANES data evidenced that not only As(V) but WO4 released from the POM retained on surfaces of Al/Fe hydroxides. The competition for sorption sites on Al/Fe hydroxides between As(V) and WO4 led to the incomplete As removal. Despite the loss of WO4, the POM re-polymerized at pH 1 still showed the comparable capability to catalyze As(III) oxidation with original POM. This study revealed electron transfer pathways from ZVAl to As(III) as catalyzed by POM and evidenced the effective POM recycling after As removal, which lowers the cost of POM application and turns the ZVAl/Fe(II)/POM/O2 system into a practical strategy for As remediation.


Assuntos
Alumínio/química , Arsênio/química , Ferro/química , Reciclagem , Compostos de Tungstênio/química , Arsênio/isolamento & purificação , Catálise , Peróxido de Hidrogênio/química , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA