Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 30(1): 91, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936170

RESUMO

BACKGROUND: Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS: Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS: We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION: UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.


Assuntos
Morte Celular Autofágica , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Catepsina B/metabolismo , Catepsina B/farmacologia , Células Epiteliais/metabolismo , Receptores ErbB , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Redox Biol ; 64: 102786, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348156

RESUMO

Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.


Assuntos
Lactoilglutationa Liase , Metformina , Doenças Retinianas , Camundongos , Animais , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Mitocôndrias/metabolismo , Doenças Retinianas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/farmacologia
3.
Am J Pathol ; 193(6): 755-768, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868469

RESUMO

miR-194 is abundantly expressed in hepatocytes, and its depletion increases hepatic resistance to acetaminophen-induced acute injuries. In this study, the biological role of miR-194 in cholestatic liver injury was investigated by using miR-194/miR-192 cluster liver-specific knockout (LKO) mice, in which no liver injuries or metabolic disorders were predisposed. Bile duct ligation (BDL) and 1-naphthyl isothiocyanate (ANIT) were applied to LKO and matched control wild-type (WT) mice to induce hepatic cholestasis. Periportal liver damage, mortality rate, and liver injury biomarkers in LKO mice were significantly less than in WT mice after BDL and ANIT injection. Intrahepatic bile acid level was significantly lower in the LKO liver within 48 hours of BDL- and ANIT-induced cholestasis compared with WT. Western blot analysis showed that ß-catenin (CTNNB1) signaling and genes involved in cellular proliferation were activated in BDL- and ANIT-treated mice. The expression levels of cholesterol 7 alpha-hydroxylase (CYP7A1), pivotal in bile synthesis, and its upstream regulator hepatocyte nuclear factor 4α were reduced in primary LKO hepatocytes and liver tissues compared with WT. The knockdown of miR-194 using miRNA inhibitors reduced CYP7A1 expression in WT hepatocytes. In contrast, the knockdown of CTNNB1 and overexpression of miR-194, but not miR-192, in LKO hepatocytes and AML12 cells increased CYP7A1 expression. In conclusion, the results suggest that the loss of miR-194 ameliorates cholestatic liver injury and may suppress CYP7A1 expression via activation of CTNNB1 signaling.


Assuntos
Colestase , Hepatopatias , Camundongos , Animais , beta Catenina/metabolismo , Colestase/genética , Colestase/metabolismo , Hepatopatias/metabolismo , Hepatócitos/metabolismo , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo
4.
Biomed Pharmacother ; 141: 111855, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229248

RESUMO

Hepatic clearance has been widely studied for over 50 yr. Many models have been developed using either theoretical or empirical tests to predict drug metabolism. The well-stirred, parallel-tube, and dispersion metabolic models have been extensively discussed. However, to our knowledge, these models cannot fully describe all relevant scenarios in hepatic clearance. We addressed this issue using the isolated perfused rat liver technique with minor modifications. Diazepam was selected to illustrate different levels of drug plasma-protein binding by changing the added concentration of human serum albumin. The free fractions of diazepam at different albumin concentrations were assayed by rapid equilibrium dialysis. The experimental data provide new insights concerning an accepted formula used to describe hepatic clearance. Regarding drug concentrations passing through the liver, the driving force concentration (CH,ss) in terms of Cin (influx in the liver) or Cout (efflux from the liver) needs to be carefully considered when determining drug hepatic and intrinsic clearances. The newly established model, termed the modified well-stirred model, which was derived from the original formula, successfully estimated hepatic drug metabolism. Using the modified well-stirred model, a theoretical driving force concentration of diazepam passing through the liver was evaluated. The model was further used to assess the predictability of in vitro to in vivo extrapolation. This study was not intended to refute the existing models, but rather to augment them using experimental data. The results stress the importance of proper calculation of dose when the drug clearance deviates from the prediction of the well-stirred model.


Assuntos
Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Albuminas/metabolismo , Algoritmos , Animais , Diálise , Diazepam/sangue , Diazepam/farmacocinética , Humanos , Masculino , Taxa de Depuração Metabólica , Modelos Teóricos , Perfusão , Ratos , Ratos Sprague-Dawley
5.
J Biomed Sci ; 25(1): 75, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367658

RESUMO

BACKGROUND: Jaundice is a common symptom of inherited or acquired liver diseases or a manifestation of diseases involving red blood cell metabolism. Recent progress has elucidated the molecular mechanisms of bile metabolism, hepatocellular transport, bile ductular development, intestinal bile salt reabsorption, and the regulation of bile acids homeostasis. MAIN BODY: The major genetic diseases causing jaundice involve disturbances of bile flow. The insufficiency of bile salts in the intestines leads to fat malabsorption and fat-soluble vitamin deficiencies. Accumulation of excessive bile acids and aberrant metabolites results in hepatocellular injury and biliary cirrhosis. Progressive familial intrahepatic cholestasis (PFIC) is the prototype of genetic liver diseases manifesting jaundice in early childhood, progressive liver fibrosis/cirrhosis, and failure to thrive. The first three types of PFICs identified (PFIC1, PFIC2, and PFIC3) represent defects in FIC1 (ATP8B1), BSEP (ABCB11), or MDR3 (ABCB4). In the last 5 years, new genetic disorders, such as TJP2, FXR, and MYO5B defects, have been demonstrated to cause a similar PFIC phenotype. Inborn errors of bile acid metabolism also cause progressive cholestatic liver injuries. Prompt differential diagnosis is important because oral primary bile acid replacement may effectively reverse liver failure and restore liver functions. DCDC2 is a newly identified genetic disorder causing neonatal sclerosing cholangitis. Other cholestatic genetic disorders may have extra-hepatic manifestations, such as developmental disorders causing ductal plate malformation (Alagille syndrome, polycystic liver/kidney diseases), mitochondrial hepatopathy, and endocrine or chromosomal disorders. The diagnosis of genetic liver diseases has evolved from direct sequencing of a single gene to panel-based next generation sequencing. Whole exome sequencing and whole genome sequencing have been actively investigated in research and clinical studies. Current treatment modalities include medical treatment (ursodeoxycholic acid, cholic acid or chenodeoxycholic acid), surgery (partial biliary diversion and liver transplantation), symptomatic treatment for pruritus, and nutritional therapy. New drug development based on gene-specific treatments, such as apical sodium-dependent bile acid transporter (ASBT) inhibitor, for BSEP defects are underway. SHORT CONCLUSION: Understanding the complex pathways of jaundice and cholestasis not only enhance insights into liver pathophysiology but also elucidate many causes of genetic liver diseases and promote the development of novel treatments.


Assuntos
Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/terapia , Icterícia Obstrutiva/diagnóstico , Icterícia Obstrutiva/terapia , Colestase Intra-Hepática/complicações , Colestase Intra-Hepática/genética , Humanos , Icterícia Obstrutiva/etiologia , Icterícia Obstrutiva/genética
6.
Mol Cancer Ther ; 16(2): 312-322, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27980102

RESUMO

Hepatocellular carcinoma, a deadly disease, commonly arises in the setting of chronic inflammation. C-C motif chemokine ligand 2 (CCL2/MCP1), a chemokine that recruits CCR2-positive immune cells to promote inflammation, is highly upregulated in hepatocellular carcinoma patients. Here, we examined the therapeutic efficacy of CCL2-CCR2 axis inhibitors against hepatitis and hepatocellular carcinoma in the miR-122 knockout (a.k.a. KO) mouse model. This mouse model displays upregulation of hepatic CCL2 expression, which correlates with hepatitis that progress to hepatocellular carcinoma with age. Therapeutic potential of CCL2-CCR2 axis blockade was determined by treating KO mice with a CCL2-neutralizing antibody (nAb). This immunotherapy suppressed chronic liver inflammation in these mice by reducing the population of CD11highGr1+ inflammatory myeloid cells and inhibiting expression of IL6 and TNFα in KO livers. Furthermore, treatment of tumor-bearing KO mice with CCL2 nAb for 8 weeks significantly reduced liver damage, hepatocellular carcinoma incidence, and tumor burden. Phospho-STAT3 (Y705) and c-MYC, the downstream targets of IL6, as well as NF-κB, the downstream target of TNFα, were downregulated upon CCL2 inhibition, which correlated with suppression of tumor growth. In addition, CCL2 nAb enhanced hepatic NK-cell cytotoxicity and IFNγ production, which is likely to contribute to the inhibition of tumorigenesis. Collectively, these results demonstrate that CCL2 immunotherapy could be an effective therapeutic approach against inflammatory liver disease and hepatocellular carcinoma. Mol Cancer Ther; 16(2); 312-22. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Neutralizantes/farmacologia , Biomarcadores , Biópsia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quimiocina CCL2/genética , Modelos Animais de Doenças , Citometria de Fluxo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Knockout , MicroRNAs/genética , Receptores CCR2/genética , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Hepatology ; 64(2): 599-615, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27016325

RESUMO

UNLABELLED: A defining feature of the mammalian liver is polyploidy, a numerical change in the entire complement of chromosomes. The first step of polyploidization involves cell division with failed cytokinesis. Although polyploidy is common, affecting ∼90% of hepatocytes in mice and 50% in humans, the specialized role played by polyploid cells in liver homeostasis and disease remains poorly understood. The goal of this study was to identify novel signals that regulate polyploidization, and we focused on microRNAs (miRNAs). First, to test whether miRNAs could regulate hepatic polyploidy, we examined livers from Dicer1 liver-specific knockout mice, which are devoid of mature miRNAs. Loss of miRNAs resulted in a 3-fold reduction in binucleate hepatocytes, indicating that miRNAs regulate polyploidization. Second, we surveyed age-dependent expression of miRNAs in wild-type mice and identified a subset of miRNAs, including miR-122, that is differentially expressed at 2-3 weeks, a period when extensive polyploidization occurs. Next, we examined Mir122 knockout mice and observed profound, lifelong depletion of polyploid hepatocytes, proving that miR-122 is required for complete hepatic polyploidization. Moreover, the polyploidy defect in Mir122 knockout mice was ameliorated by adenovirus-mediated overexpression of miR-122, underscoring the critical role miR-122 plays in polyploidization. Finally, we identified direct targets of miR-122 (Cux1, Rhoa, Iqgap1, Mapre1, Nedd4l, and Slc25a34) that regulate cytokinesis. Inhibition of each target induced cytokinesis failure and promoted hepatic binucleation. CONCLUSION: Among the different signals that have been associated with hepatic polyploidy, miR-122 is the first liver-specific signal identified; our data demonstrate that miR-122 is both necessary and sufficient in liver polyploidization, and these studies will serve as the foundation for future work investigating miR-122 in liver maturation, homeostasis, and disease. (Hepatology 2016;64:599-615).


Assuntos
Hepatócitos/fisiologia , MicroRNAs/fisiologia , Poliploidia , Animais , Citocinese , Fígado/citologia , Fígado/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Hepatology ; 59(2): 555-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038073

RESUMO

UNLABELLED: c-Myc is a well-known oncogene frequently up-regulated in different malignancies, whereas liver-specific microRNA (miR)-122, a bona fide tumor suppressor, is down-regulated in hepatocellular cancer (HCC). Here we explored the underlying mechanism of reciprocal regulation of these two genes. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and northern blot analysis demonstrated reduced expression of the primary, precursor, and mature miR-122 in c-MYC-induced HCCs compared to the benign livers, indicating transcriptional suppression of miR-122 upon MYC overexpression. Indeed, chromatin immunoprecipitation (ChIP) assay showed significantly reduced association of RNA polymerase II and histone H3K9Ac, markers of active chromatin, with the miR-122 promoter in tumors relative to the c-MYC-uninduced livers, indicating transcriptional repression of miR-122 in c-MYC-overexpressing tumors. The ChIP assay also demonstrated a significant increase in c-Myc association with the miR-122 promoter region that harbors a conserved noncanonical c-Myc binding site in tumors compared to the livers. Ectopic expression and knockdown studies showed that c-Myc indeed suppresses expression of primary and mature miR-122 in hepatic cells. Additionally, Hnf-3ß, a liver enriched transcription factor that activates miR-122 gene, was suppressed in c-MYC-induced tumors. Notably, miR-122 also repressed c-Myc transcription by targeting transcriptional activator E2f1 and coactivator Tfdp2, as evident from ectopic expression and knockdown studies and luciferase reporter assays in mouse and human hepatic cells. CONCLUSION: c-Myc represses miR-122 gene expression by associating with its promoter and by down-regulating Hnf-3ß expression, whereas miR-122 indirectly inhibits c-Myc transcription by targeting Tfdp2 and E2f1. In essence, these results suggest a double-negative feedback loop between a tumor suppressor (miR-122) and an oncogene (c-Myc).


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição E2F1/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/fisiopatologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição/fisiologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Regulação para Cima/genética , Regulação para Cima/fisiologia
10.
Am J Pathol ; 183(6): 1719-1730, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113455

RESUMO

Loss of miR-122 causes chronic steatohepatitis and spontaneous hepatocellular carcinoma. However, the consequence of miR-122 deficiency on genotoxic stress-induced liver pathogenesis is poorly understood. Here, we investigated the impact of miR-122 depletion on liver pathobiology by treating liver-specific miR-122 knockout (LKO) mice with the hepatocarcinogen diethylnitrosamine (DEN). At 25 weeks post-DEN injection, all LKO mice developed CK-19-positive hepatobiliary cysts, which correlated with DEN-induced transcriptional activation of Cdc25a mediated through E2f1. Additionally, LKO livers were more fibrotic and vascular, and developed larger microscopic tumors, possibly due to elevation of the Axl oncogene, a receptor tyrosine kinase as a novel target of miR-122, and several protumorigenic miR-122 targets. At 35 weeks following DEN exposure, LKO mice exhibited a higher incidence of macroscopic liver tumors (71%) and cysts (86%) compared to a 21.4% and 0% incidence of tumors and cysts, respectively, in control mice. The tumors in LKO mice were bigger (ninefold, P = 0.015) and predominantly hepatocellular carcinoma, whereas control mice mostly developed hepatocellular adenoma. DEN treatment also reduced survival of LKO mice compared to control mice (P = 0.03). Interestingly, induction of oxidative stress and proinflammatory cytokines in LKO liver shortly after DEN exposure indicates predisposition of a pro-tumorigenic microenvironment. Collectively, miR-122 depletion facilitates cystogenesis and hepatocarcinogenesis in mice on DEN challenge by up-regulating several genes involved in proliferation, growth factor signaling, neovascularization, and metastasis.


Assuntos
Alquilantes/efeitos adversos , Carcinoma Hepatocelular , Cistos , Dietilnitrosamina/efeitos adversos , Neoplasias Hepáticas , MicroRNAs , Alquilantes/farmacologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Cistos/induzido quimicamente , Cistos/genética , Cistos/metabolismo , Cistos/patologia , Citocinas/biossíntese , Citocinas/genética , Dietilnitrosamina/farmacologia , Fator de Transcrição E2F1/biossíntese , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fosfatases cdc25/biossíntese , Fosfatases cdc25/genética , Receptor Tirosina Quinase Axl
11.
Nanomedicine ; 9(8): 1169-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23727126

RESUMO

miR-122, a liver-specific tumor suppressor microRNA, is frequently down-regulated in hepatocellular carcinoma (HCC). LNP-DP1, a cationic lipid nanoparticle formulation, was developed as a vehicle to restore deregulated gene expression in HCC cells by miR-122 delivery. LNP-DP1 consists of 2-dioleyloxy-N,N-dimethyl-3-aminopropane (DODMA), egg phosphatidylcholine, cholesterol and cholesterol-polyethylene glycol. In vitro, LNP-DP1-mediated transfection of a miR-122 mimic to HCC cells down-regulated miR-122 target genes by >95%. In vivo, siRNAs/miRNAs encapsulated in LNP-DP1 were preferentially taken up by hepatocytes and tumor cells in a mouse HCC model. The miR-122 mimic in LNP-DP1 was functional in HCC cells without causing systemic toxicity. To demonstrate its therapeutic potential, LNP-DP1 encapsulating miR-122 mimic was intratumorally injected and resulted in ~50% growth suppression of HCC xenografts within 30 days, which correlated well with suppression of target genes and impairment of angiogenesis. These data demonstrate the potential of LNP-DP1-mediated microRNA delivery as a novel strategy for HCC therapy. FROM THE CLINICAL EDITOR: In this study, LNP-DP1 -a cationic lipid nanoparticle formulation -is reported as a vehicle to restore deregulated gene expression in hepatic carcinoma cells by siRNA and miRNA delivery using a mouse model. Further expansions to this study may enable transition to clinical trials of this system.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , MicroRNAs/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Transfecção , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Lipídeos/química , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/uso terapêutico , Modelos Moleculares , Nanopartículas/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Transfecção/métodos
12.
Curr Pathobiol Rep ; 1(1): 53-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23565350

RESUMO

MicroRNAs (miRNAs), a class of short non-coding RNAs, have been studied intensely and extensively in the past decade in every aspect of biological processes, including cell differentiation, proliferation and death. These findings pointed out the pivotal role of miRNA in posttranscriptional control of gene expression in animals and established miRNAs as therapeutic targets for different pathophysiological processes, including liver disease. Here we have discussed the recent advances made in identifying the miRNAs deregulated in different liver diseases such as obesity, hepatitis, alcoholic and nonalcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma, as well as pathophysiological conditions such as developmental abnormality. We have specifically reviewed the role of miRNAs in these diseases and discussed critically potential impacts of these miRNAs as biomarkers and/or therapeutic targets in liver pathobiology in the clinical setting. Finally, we have highlighted the latest techniques or preclinical and/or clinical trials that are being developed to replenish or inhibit the deregulated miRNAs.

13.
J Cell Biochem ; 114(8): 1810-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23533167

RESUMO

We have previously reported that the gene encoding protein tyrosine phosphatase receptor type-O (PTPRO) is suppressed by promoter methylation in a rat model of hepatocellular carcinoma (HCC) and it functions as tumor suppressor in leukemia and lung cancer. Here, we explored the methylation and expression of PTPRO as well as its function in human HCC. MassARRAY analysis of primary human HCC and matching liver samples (n = 24) revealed significantly higher (P = 0.004) methylation density at the promoter CGI in tumors. Combined bisulfite restriction analysis (COBRA) of another set of human HCC samples (n = 17) demonstrated that the CGI was methylated in 29% of tumors where expression of PTPRO was lower than that in corresponding matching livers. A substrate-trapping mutant of PTPRO that stabilizes the bound substrates was used to identify its novel substrate(s). VCP/p97 was found to be a PTPRO substrate by mass spectrometry of the peptides pulled down by the substrate-trapping mutant of PTPRO. Tyrosyl dephosphorylation of VCP following ectopic expression of wild-type PTPRO in H293T and HepG2 cells confirmed that it is a bona fide substrate of PTPRO. Treatment of PTPRO overexpressing HepG2 cells with Doxorubicin, a DNA damaging drug commonly used in therapy of primary HCC, sensitized these cells to this potent anticancer drug that correlated with dephosphorylation of VCP. Taken together, these results demonstrate methylation and downregulation of PTPRO in a subset of primary human HCC and establish VCP as a novel functionally important substrate of this tyrosine phosphatase that could be a potential molecular target for HCC therapy.


Assuntos
Adenosina Trifosfatases/biossíntese , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/biossíntese , Metilação de DNA , DNA de Neoplasias/metabolismo , Genes Neoplásicos , Neoplasias Hepáticas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Animais , Antibióticos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Ratos , Proteína com Valosina
14.
PLoS One ; 7(8): e41949, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905112

RESUMO

BACKGROUND: Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Dnmt1 wild type (Dnmt1(+/+)) and hypomorphic (Dnmt1(N/+)) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1(+/+) mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1(N/+) mice were less susceptible to alcoholic steatosis compared to Dnmt1(+/+) mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1(N/+) mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and Ppara were methylation-free in both genotypes irrespective of the diet, suggesting that promoter methylation does not regulate their expression. Similarly, 5-mdC content of the liver genome, as measured by LC-MS/MS analysis, was not affected by alcohol diet in the wild type or hypomorphic mice. CONCLUSIONS/SIGNIFICANCE: Although feeding alcohol diet reduced Dnmtase activity, the loss of one copy of Dnmt1 protected mice from alcoholic hepatosteatosis by dysregulating genes involved in lipid metabolism and oxidative stress.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Álcoois/farmacologia , Ração Animal , Animais , Linhagem Celular , Cromatografia Líquida/métodos , Ilhas de CpG , DNA/genética , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Modelos Animais de Doenças , Epigênese Genética , Etanol/farmacologia , Genoma , Humanos , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas/genética , Masculino , Camundongos , Estresse Oxidativo , Espectrometria de Massas em Tandem/métodos , Xenobióticos/metabolismo , DNA Metiltransferase 3B
15.
J Clin Invest ; 122(8): 2871-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22820288

RESUMO

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Assuntos
Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Proliferação de Células , Sobrevivência Celular/genética , Citocinas/biossíntese , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Expressão Gênica , Genes Supressores de Tumor , Genes myc , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas Experimentais/etiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/uso terapêutico , Monócitos/imunologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
16.
Biomaterials ; 33(25): 5924-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22652024

RESUMO

Clinical application of small interfering RNA (siRNA) requires safe and efficient delivery in vivo. Here, we report the design and synthesis of lipid nanoparticles (LNPs) for siRNA delivery based on cationic lipids with multiple tertiary amines and hydrophobic linoleyl chains. LNPs incorporating the lipid containing tris(2-aminoethyl)amine (TREN) and 3 linoleyl chains, termed TRENL3, were found to have exceptionally high siRNA transfection efficacy that was markedly superior to lipofectamine, a commercial transfection agent. In addition, inclusion of polyunsaturated fatty acids, such as linoleic acid and linolenic acid in the formulation further enhanced the siRNA delivery efficiency. TRENL3 LNPs were further shown to transport siRNA into the cytosol primarily via macropinocytosis rather than clathrin-mediated endocytosis. The new LNPs have demonstrated preferential uptake by the liver and hepatocellular carcinoma in mice, thereby leading to high siRNA gene-silencing activity. These data suggest potential therapeutic applications of TRENL3 mediated delivery of siRNA for liver diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Fígado/metabolismo , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular , Coloides , Regulação para Baixo , Etilenodiaminas/química , Ácidos Graxos Insaturados/química , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/ultraestrutura , Estabilidade de RNA , RNA Interferente Pequeno/metabolismo , Distribuição Tecidual
17.
Hepatology ; 56(1): 186-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22318941

RESUMO

UNLABELLED: Considerable effort has been made in elucidating the mechanism and functional significance of high levels of aerobic glycolysis in cancer cells, commonly referred to as the Warburg effect. Here we investigated whether the gluconeogenic pathway is significantly modulated in hepatocarcinogenesis, resulting in altered levels of glucose homeostasis. To test this possibility, we used a mouse model (mice fed a choline-deficient diet) that develops nonalcoholic steatohepatitis (NASH), preneoplastic nodules, and hepatocellular carcinoma (HCC), along with human primary HCCs and HCC cells. This study demonstrated marked reduction in the expressions of G6pc, Pepck, and Fbp1 encoding the key gluconeogenic enzymes glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, fructose-1,6-phosphatase, respectively, and the transcription factor Pgc-1α in HCCs developed in the mouse model that correlated with reduction in serum glucose in tumor-bearing mice. The messenger RNA (mRNA) levels of these genes were also reduced by ≈80% in the majority of primary human HCCs compared with matching peritumoral livers. The expression of microRNA (miR)-23a, a candidate miR targeting PGC-1α and G6PC, was up-regulated in the mouse liver tumors as well as in primary human HCC. We confirmed PGC-1α and G6PC as direct targets of miR-23a and their expressions negatively correlated with miR-23a expression in human HCCs. G6PC expression also correlated with tumor grade in human primary HCCs. Finally, this study showed that the activation of interleukin (IL)-6-Stat3 signaling caused the up-regulation of miR-23a expression in HCC. CONCLUSION: Based on these data, we conclude that gluconeogenesis is severely compromised in HCC by IL6-Stat3-mediated activation of miR-23a, which directly targets PGC-1α and G6PC, leading to decreased glucose production.


Assuntos
Carcinoma Hepatocelular/genética , Glucose-6-Fosfatase/metabolismo , Neoplasias Hepáticas/genética , MicroRNAs/genética , PPAR gama/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/metabolismo , Idoso , Análise de Variância , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dieta , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , PPAR gama/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Estatísticas não Paramétricas
18.
PLoS One ; 6(11): e26948, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073224

RESUMO

Male gender is a risk factor for the development of hepatocellular carcinoma (HCC) but the mechanisms are not fully understood. The RNA binding motif gene on the Y chromosome (RBMY), encoding a male germ cell-specific RNA splicing regulator during spermatogenesis, is aberrantly activated in human male liver cancers. This study investigated the in vitro oncogenic effect and the possible mechanism of RBMY in human hepatoma cell line HepG2 and its in vivo effect with regards to the livers of human and transgenic mice. RBMY expression in HepG2 cells was knocked down by RNA interference and the cancer cell phenotype was characterized by soft-agar colony formation and sensitivity to hydrogen-peroxide-induced apoptosis. The results revealed that RBMY knockdown reduced the transformation and anti-apoptotic efficiency of HepG2 cells. The expression of RBMY, androgen receptor (AR) and its inhibitory variant AR45, AR-targeted genes insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP-3) was analyzed by quantitative RT-PCR. Up-regulation of AR45 variant and reduction of IGF-1 and IGFBP-3 expression was only detected in RBMY knockdown cells. Moreover, RBMY positive human male HCC expressed lower level of AR45 as compared to RBMY negative HCC tissues. The oncogenic properties of RBMY were further assessed in a transgenic mouse model. Liver-specific RBMY transgenic mice developed hepatic pre-cancerous lesions, adenoma, and HCC. RBMY also accelerated chemical carcinogen-induced hepatocarcinogenesis in transgenic mice. Collectively, these findings suggest that Y chromosome-specific RBMY is likely involved in the regulation of androgen receptor activity and contributes to male predominance of HCC.


Assuntos
Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Oncogenes , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Biol Chem ; 284(46): 32015-27, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19726678

RESUMO

MicroRNAs are negative regulators of protein coding genes. The liver-specific microRNA-122 (miR-122) is frequently suppressed in primary hepatocellular carcinomas (HCCs). In situ hybridization demonstrated that miR-122 is abundantly expressed in hepatocytes but barely detectable in primary human HCCs. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and SK-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice. Further, miR-122-expressing HCC cells retained an epithelial phenotype that correlated with reduced Vimentin expression. ADAM10 (a distintegrin and metalloprotease family 10), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Conversely, depletion of the endogenous miR-122 in Huh-7 cells facilitated their tumorigenic properties with concomitant up-regulation of these targets. Expression of SRF or Igf1R partially reversed tumor suppressor function of miR-122. Further, miR-122 impeded angiogenic properties of endothelial cells in vitro. Notably, ADAM10, SRF, and Igf1R were up-regulated in primary human HCCs compared with the matching liver tissue. Co-labeling studies demonstrated exclusive localization of miR-122 in the benign livers, whereas SRF predominantly expressed in HCC. More importantly, growth and clonogenic survival of miR-122-expressing HCC cells were significantly reduced upon treatment with sorafenib, a multi-kinase inhibitor clinically effective against HCC. Collectively, these results suggest that the loss of multifunctional miR-122 contributes to the malignant phenotype of HCC cells, and miR-122 mimetic alone or in combination with anticancer drugs can be a promising therapeutic regimen against liver cancer.


Assuntos
Antineoplásicos/farmacologia , Benzenossulfonatos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , Piridinas/farmacologia , Animais , Western Blotting , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Hibridização In Situ , Neoplasias Hepáticas/patologia , Luciferases/metabolismo , Camundongos , Camundongos Nus , Niacinamida/análogos & derivados , Compostos de Fenilureia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorafenibe , Transfecção
20.
Neurobiol Dis ; 16(2): 335-45, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15193290

RESUMO

The mutilated-foot rat (mf rat) is an autosomal recessive mutant with characteristic digit deformities in adult animals, and this phenotype mimics many aspects of human sensory neuropathy. The genetics of mf rats was recently elucidated. To understand whether the genotype is responsible for cutaneous denervation before clinically overt mutilation in adult mf rats, we investigated skin innervation in postnatal day 7 (P7) mf rats and compared the patterns with P7 wild-type rats. The mf rat carries a G-->A mutation in the gene encoding the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4). In the footpad skin of P7 mf rats, there was a >90% loss of epidermal nerves (0.7-7.9% of P7 wild-type rats) as indicated by neuronal markers including protein gene product 9.5 (PGP 9.5), growth-associated protein 43 (GAP43), calcitonin gene-related peptide (CGRP), and substance P (SP). The epidermis of hairy skin in hind feet was completely denervated in mf rats as well. Compared with an approximately 80% reduction in the size of dermal nerve fascicles and a parallel loss of nerve fibers, the nearly complete absence of epidermal innervation suggests further sensory nerve degeneration at the level of nerve terminals in the epidermis. In contrast, the loss of epidermal nerves in the abdominal skin of mf rats was less extensive than that in the footpad skin of mf rats; CGRP (+) and SP (+) fibers were moderately reduced (28.3-56.4% of levels of wild-type rats) with normal amounts of PGP 9.5 (+) and GAP43 (+) nerves. Sympathetic innervation as assessed by tyrosine hydroxylase immunoreactivity was absent from the footpad and abdominal skin of mf rats. In conclusion, there is regional skin denervation with diffuse sympathetic denervation in P7 mf rats. These results suggest that the mutation in Cct4 underlies cutaneous nerve degeneration in mf rats.


Assuntos
Doenças do Sistema Nervoso Autônomo/patologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Chaperoninas/genética , Derme/inervação , Deformidades Congênitas do Pé/patologia , Deformidades Congênitas do Pé/fisiopatologia , Abdome , Animais , Animais Recém-Nascidos , Chaperonina com TCP-1 , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Mutação Puntual , Ratos , Ratos Mutantes , Sistema Nervoso Simpático/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA