Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(6): 1338-1352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932949

RESUMO

Ethylene-responsive factors (ERFs) have diverse functions in the regulation of various plant developmental processes. Here, we demonstrate the dual role of an Arabidopsis ERF gene, AtERF19, in regulating reproductive meristem activity and flower organ size through the regulation of genes involved in CLAVATA-WUSCHEL (CLV-WUS) and auxin signaling, respectively. We found that AtERF19 stimulated the formation of flower primordia and controlled the number of flowers produced by activating WUS and was negatively regulated by CLV3. 35S::AtERF19 expression resulted in significantly more flowers, whereas 35S::AtERF19 + SRDX dominant-negative mutants produced fewer flowers. In addition, AtERF19 also functioned to control flower organ size by promoting the division/expansion of the cells through activating Small Auxin Up RNA Gene 32 (SAUR32), which positively regulated MYB21/24 in the auxin signaling pathway. 35S::AtERF19 and 35S::SAUR32 resulted in similarly larger flowers, whereas 35S::AtERF19 + SRDX and 35S::SAUR32-RNAi mutants produced smaller flowers than the wild type. The functions of AtERF19 were confirmed by the production of similarly more and larger flowers in 35S::AtERF19 transgenic tobacco (Nicotiana benthamiana) and in transgenic Arabidopsis which ectopically expressed the orchid gene (Nicotiana benthamiana) PaERF19 than in wild-type plants. The finding that AtERF19 regulates genes involved in both CLV-WUS and auxin signaling during flower development significantly expands the current knowledge of the multifunctional evolution of ERF genes in plants. The results presented in this work indicate a dual role for the transcription factor AtERF19 in controlling the number of flowers produced and flower organ size through the regulation of genes involved in CLV-WUS and auxin signaling, respectively. Our findings expand the knowledge of the roles of ERF genes in the regulation of reproductive development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Meristema , Tamanho do Órgão/genética , Flores , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Front Plant Sci ; 13: 785441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432433

RESUMO

In plants, the key enzyme in ethylene biosynthesis is 1-aminocyclopropane-1 carboxylic acid (ACC) synthase (ACS), which catalyzes S-adenosyl-L-methionine (SAM) to ACC, the precursor of ethylene. Ethylene binds to its receptors, such as ethylene response 1 (ETR1), to switch on ethylene signal transduction. To understand the function of ACS and ETR1 in orchids, Oncidium ACC synthase 12 (OnACS12) and Oncidium ETR1 (OnETR1) from Oncidium Gower Ramsey were functionally analyzed in Arabidopsis. 35S::OnACS12 caused late flowering and anther indehiscence phenotypes due to its effect on GA-DELLA signaling pathways. 35S::OnACS12 repressed GA biosynthesis genes (CPS, KS, and GA3ox1), which caused the upregulation of DELLA [GA-INSENSITIVE (GAI), RGA-LIKE1 (RGL1), and RGL2] expression. The increase in DELLAs not only suppressed LEAFY (LFY) expression and caused late flowering but also repressed the jasmonic acid (JA) biosynthesis gene DAD1 and caused anther indehiscence by downregulating the endothecium-thickening-related genes MYB26, NST1, and NST2. The ectopic expression of an OnETR1 dominant-negative mutation (OnETR1-C65Y) caused both ethylene and JA insensitivity in Arabidopsis. 35S::OnETR1-C65Y delayed flower/leaf senescence by suppressing downstream genes in ethylene signaling, including EDF1-4 and ERF1, and in JA signaling, including MYC2 and WRKY33. JA signaling repression also resulted in indehiscent anthers via the downregulation of MYB26, NST1, NST2, and MYB85. These results not only provide new insight into the functions of ACS and ETR1 orthologs but also uncover their functional interactions with other hormone signaling pathways, such as GA-DELLA and JA, in plants.

3.
Plant J ; 105(5): 1357-1373, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277739

RESUMO

The floral quartet model proposes that plant MADS box proteins function as higher order tetrameric complexes. However, in planta evidence for MADS box tetramers remains scarce. Here, we applied a strategy using in vivo fluorescence resonance energy transfer (FRET) based on the distance change and distance symmetry of stable tetrameric complexes in tobacco (Nicotiana benthamiana) leaf cells to improve the accuracy of the estimation of heterotetrameric complex formation. This measuring system precisely verified the stable state of Arabidopsis petal (AP3/PI/SEP3/AP1) and stamen (AP3/PI/SEP3/AG) complexes and showed that the lily (Lilium longiflorum) PI co-orthologs LMADS8 and LMADS9 likely formed heterotetrameric petal complexes with Arabidopsis AP3/SEP3/AP1, which rescued petal defects of pi mutants. However, L8/L9 did not form heterotetrameric stamen complexes with Arabidopsis AP3/SEP3/AG to rescue the stamen defects of the pi mutants. Importantly, this system was applied successfully to find complicated tepal and stamen heterotetrameric complexes in lily. We found that heterodimers of B function AP3/PI orthologs (L1/L8) likely coexist with the homodimers of PI orthologs (L8/L8, L9/L9) to form five (two most stable and three stable) tepal- and four (one most stable and three stable) stamen-related heterotetrameric complexes with A/E and C/E function proteins in lily. Among these combinations, L1 preferentially interacted with L8 to form the most stable heterotetrameric complexes, and the importance of the L8/L8 and L9/L9 homodimers in tepal/stamen formation in lily likely decreased to a minor part during evolution. The system provides substantial improvements for successfully estimating the existence of unknown tetrameric complexes in plants.


Assuntos
Flores/metabolismo , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA