Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 9(10): e1003832, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098144

RESUMO

By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Ciclo Celular/genética , DNA Topoisomerases Tipo II/genética , DNA/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Segregação de Cromossomos/genética , Humanos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Cycle ; 9(9): 1774-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20404533

RESUMO

Classically, chromosomal functions in DNA repair and sister chromatid association have been assigned to the cohesin proteins. More recent studies have provided evidence that cohesins also localize to the centrosomes, which organize the bipolar spindle during mitosis. Depletion of cohesin proteins is associated with multi-polar mitosis in which spindle pole integrity is compromised. However, the spindle pole defects after cohesin depletion could be an indirect consequence of a chromosomal cohesion defect which might impact centrosome integrity via alterations to the spindle microtubule network. Here we show that the cohesin Rad21 is required for centrosome integrity independently of its role as a chromosomal cohesin. Thus, Rad21 may promote accurate chromosome transmission not only by virtue of its function as a chromosomal cohesin, but also because it is required for centrosome function.


Assuntos
Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA , Células HeLa , Humanos , Interfase , Mitose , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Coesinas , Quinase 1 Polo-Like
3.
Cell Cycle ; 9(9): 1759-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20404544

RESUMO

Cohesin proteins help maintain the physical associations between sister chromatids that arise in S-phase and are removed in anaphase. Recent studies found that cohesins also localize to the centrosomes, the organelles that organize the mitotic bipolar spindle. We find that the cohesin protein Rad21 localizes to centrosomes in a manner that is dependent upon known regulators of sister chromatid cohesion as well as regulators of centrosome function. These data suggest that Rad21 functions at the centrosome and that the regulators of Rad21 coordinate the centrosome and chromosomal functions of cohesin.


Assuntos
Centrossomo/metabolismo , Proteínas Nucleares/análise , Fosfoproteínas/análise , Anáfase , Aurora Quinases , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA , Endopeptidases/metabolismo , Células HeLa , Humanos , Mitose , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Separase , Coesinas , Quinase 1 Polo-Like
4.
Genes Dev ; 20(9): 1162-74, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651657

RESUMO

Topoisomerase II (Topo II) performs topological modifications on double-stranded DNA molecules that are essential for chromosome condensation, resolution, and segregation. In mammals, G2 and metaphase cell cycle delays induced by Topo II poisons have been proposed to be the result of checkpoint activation in response to the catenation state of DNA. However, the apparent lack of such controls in model organisms has excluded genetic proof that Topo II checkpoints exist and are separable from the conventional DNA damage checkpoint controls. But here, we define a Topo II-dependent G2/M checkpoint in a genetically amenable eukaryote, budding yeast, and demonstrate that this checkpoint enhances cell survival. Conversely, a lack of the checkpoint results in aneuploidy. Neither DNA damage-responsive pathways nor Pds1/securin are needed for this checkpoint. Unusually, spindle assembly checkpoint components are required for the Topo II checkpoint, but checkpoint activation is not the result of failed chromosome biorientation or a lack of spindle tension. Thus, compromised Topo II function activates a yeast checkpoint system that operates by a novel mechanism.


Assuntos
Proteínas de Ciclo Celular/fisiologia , DNA Topoisomerases Tipo II/fisiologia , Instabilidade Genômica , Mitose , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos , Dano ao DNA , DNA Topoisomerases Tipo II/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Fase G2 , Mutação , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina , Separase , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA