Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 30(2): 59-69, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11162186

RESUMO

Pasteurella (Mannheimia) haemolytica leukotoxin (Lkt) is the major factor that contributes to lung injury in bovine pneumonic pasteurellosis. Lkt is a pore-forming exotoxin that has the unique property of inducing cytolysis only in ruminant leukocytes and platelets. Cytolysis of many cell types is mediated by arachidonic acid (AA) and its generation by phospholipases is regulated by G-protein-coupled receptors. However, the contribution of Lkt-induced AA generation to cytolysis and the signalling cascade underlying AA generation in bovine leukocytes have not been determined. We have determined whether AA mediates Lkt-induced cytolysis and delineated the signalling mechanisms underlying AA generation in bovine leukocytes. Bovine lymphoma cells were used as an experimental system to investigate the Lkt-induced [(3)H] AA release, an index of AA generation and lactate dehydrogenase release, an index of cytolysis. The results indicate that Lkt induces AA release and cytolysis in a concentration- and time-dependent fashion. The AA analog, 5,8,11,14-eicosatetraynoic acid inhibited Lkt-induced cytolysis, but not AA release. Lkt-induced AA release and cytolysis were inhibited by pertussis toxin, inhibitors of cytosolic phospholipase A(2)(cPLA(2)), phospholipase C and protein kinase C (PKC), and by chelation of intracellular calcium. Furthermore, Western blot analysis revealed the presence of G(i), G(s)and G(q)type G-proteins. These results demonstrate that AA metabolites from cPLA(2)activation contribute to Lkt-induced cytolysis and G(i)type G-proteins, Ca(2+)and PKC, regulate the cPLA(2)activity.


Assuntos
Exotoxinas/farmacologia , Leucócitos/efeitos dos fármacos , Mannheimia haemolytica/metabolismo , Animais , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Bovinos , Regulação da Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Leucócitos/citologia , Mannheimia haemolytica/patogenicidade , Fosfolipases/metabolismo , Células Tumorais Cultivadas
2.
Infect Immun ; 68(1): 72-9, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10603370

RESUMO

Pasteurella (Mannheimia) haemolytica leukotoxin (Lkt) causes cell type- and species-specific effects in ruminant leukocytes. Recent studies indicate that P. haemolytica Lkt binds to bovine CD18, the common subunit of all beta2 integrins. We designed experiments with the following objectives: to identify which member of the beta2 integrins is a receptor for Lkt; to determine whether Lkt binding to the receptor is target cell (bovine leukocytes) specific; to define the relationships between Lkt binding to the receptor, calcium elevation, and cytolysis; and to determine whether a correlation exists between Lkt receptor expression and the magnitude of target cell cytolysis. We compared Lkt-induced cytolysis in neutrophils from control calves and from calves with bovine leukocyte adhesion deficiency (BLAD), because neutrophils from BLAD-homozygous calves exhibit reduced beta2 integrin expression. The results demonstrate for the first time that Lkt binds to bovine CD11a and CD18 (lymphocyte function-associated antigen 1 [LFA-1]). The binding was abolished by anti-CD11a or anti-CD18 monoclonal antibody (MAb). Lkt-induced calcium elevation in bovine alveolar macrophages (BAMs) was inhibited by anti-CD11a or anti-CD18 MAb (65 to 94% and 37 to 98%, respectively, at 5 and 50 Lkt units per ml; P < 0.05). Lkt-induced cytolysis in neutrophils and BAMs was also inhibited by anti-CD11a or anti-CD18 MAb in a concentration-dependent manner. Lkt bound to porcine LFA-1 but did not induce calcium elevation or cytolysis. In neutrophils from BLAD calves, Lkt-induced cytolysis was decreased by 44% compared to that of neutrophils from control calves (P < 0.05). These results indicate that LFA-1 is a Lkt receptor, Lkt binding to LFA-1 is not target cell specific, Lkt binding to bovine LFA-1 correlates with calcium elevation and cytolysis, and bovine LFA-1 expression correlates with the magnitude of Lkt-induced target cell cytolysis.


Assuntos
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Mannheimia haemolytica/imunologia , Neutrófilos/imunologia , Animais , Anticorpos Monoclonais , Toxinas Bacterianas/toxicidade , Antígenos CD18/metabolismo , Cálcio/metabolismo , Bovinos , Adesão Celular/imunologia , Citotoxicidade Imunológica , Exotoxinas/toxicidade , Feminino , Células HL-60 , Humanos , Técnicas In Vitro , Mannheimia haemolytica/patogenicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Suínos
3.
Microb Pathog ; 26(5): 263-73, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10222211

RESUMO

In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity.


Assuntos
Toxinas Bacterianas/farmacologia , Cálcio/metabolismo , Citocinas/genética , Citotoxinas/farmacologia , Exotoxinas/farmacologia , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/metabolismo , Mannheimia haemolytica/fisiologia , NF-kappa B/metabolismo , Animais , Bovinos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1/genética , Interleucina-8/genética , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Proteínas Tirosina Quinases/metabolismo , Suínos , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA