Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 371: 101-110, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782065

RESUMO

Vaginal drug delivery is often preferred over systemic delivery to reduce side effects and increase efficacy in treating diseases and conditions of the female reproductive tract (FRT). Current vaginal products have drawbacks, including spontaneous ejection of drug-eluting rings and unpleasant discharge from vaginal creams. Here, we describe the development and characterization of a hypotonic, gel-forming, Pluronic-based delivery system for vaginal drug administration. The rheological properties were characterized with and without common hydrogel polymers to demonstrate the versatility. Both qualitative and quantitative approaches were used to determine the Pluronic F127 concentration below the critical gel concentration (CGC) that was sufficient to achieve gelation when formulated to be hypotonic to the mouse vagina. The hypotonic, gel-forming formulation was found to form a thin, uniform gel layer along the vaginal epithelium in mice, in contrast to the rapidly forming conventional gelling formulation containing polymer above the CGC. When the hypotonic, gel-forming vehicle was formulated in combination with a progesterone nanosuspension (ProGel), equivalent efficacy was observed in the prevention of chemically-induced preterm birth (PTB) compared to commercial Crinone® vaginal cream. Further, ProGel showed marked benefits in reducing unpleasant discharge, reducing product-related toxicity, and improving compatibility with vaginal bacteria in vitro. A hypotonic, gel-forming delivery system may be a viable option for therapeutic delivery to the FRT.


Assuntos
Sistemas de Liberação de Medicamentos , Géis , Poloxâmero , Vagina , Feminino , Animais , Administração Intravaginal , Poloxâmero/química , Vagina/efeitos dos fármacos , Progesterona/administração & dosagem , Progesterona/química , Reologia , Camundongos , Cremes, Espumas e Géis Vaginais/administração & dosagem , Gravidez
2.
Nat Commun ; 14(1): 2509, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130851

RESUMO

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Assuntos
Sistemas de Liberação de Medicamentos , Melaninas , Animais , Coelhos , Tartarato de Brimonidina , Peptídeos , Aprendizado de Máquina
3.
Adv Ther (Weinh) ; 4(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33709020

RESUMO

We here introduce a new paradigm to promote pulmonary DNA vaccination. Specifically, we demonstrate that nanoparticles designed to rapidly penetrate airway mucus (mucus-penetrating particle or MPP) enhance the delivery of inhaled model DNA vaccine (i.e. ovalbumin-expressing plasmids) to pulmonary dendritic cells (DC), leading to robust and durable local and trans-mucosal immunity. In contrast, mucus-impermeable particles were poorly taken up by pulmonary DC following inhalation, despite their superior ability to mediate DC uptake in vitro compared to MPP. In addition to the enhanced immunity achieved in mucosal surfaces, inhaled MPP unexpectedly provided significantly greater systemic immune responses compared to gold-standard approaches applied in the clinic for systemic vaccination, including intradermal injection and intramuscular electroporation. We also showed here that inhaled MPP significantly enhanced the survival of an orthotopic mouse model of aggressive lung cancer compared to the gold-standard approaches. Importantly, we discovered that MPP-mediated pulmonary DNA vaccination induced memory T-cell immunity, particularly the ready-to-act effector memory-biased phenotype, both locally and systemically. The findings here underscore the importance of breaching the airway mucus barrier to facilitate DNA vaccine uptake by pulmonary DC and thus to initiate full-blown immune responses.

4.
Trends Mol Med ; 27(5): 436-450, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414070

RESUMO

The efficacy of drugs administered by traditional routes is limited by numerous biological barriers that preclude reaching the intended site of action. Further, full body systemic exposure leads to dose-limiting, off-target side effects. Topical formulations may provide more efficacious drug and nucleic acid delivery for diseases and conditions affecting mucosal tissues, but the mucus protecting our epithelial surfaces is a formidable barrier. Here, we describe recent advances in mucus-penetrating approaches for drug and nucleic acid delivery to the ocular surface, the female reproductive tract, the gastrointestinal tract, and the airways.


Assuntos
Administração Tópica , Sistemas de Liberação de Medicamentos/tendências , Muco , Nanopartículas , Administração Intravaginal , Administração Oftálmica , Animais , Vias de Administração de Medicamentos , Células Epiteliais , Feminino , Trato Gastrointestinal , Humanos , Mucosa , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA