Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(11): 935-944, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38382647

RESUMO

Many genes with distinct molecular functions have been linked to genetically heterogeneous amyotrophic lateral sclerosis (ALS), including SuperOxide Dismutase 1 (SOD1) and Valosin-Containing Protein (VCP). SOD1 converts superoxide to oxygen and hydrogen peroxide. VCP acts as a chaperon to regulate protein degradation and synthesis and various other cellular responses. Although the functions of these two genes differ, in the current report we show that overexpression of wild-type VCP in mice enhances lifespan and maintains the size of neuromuscular junctions (NMJs) of both male and female SOD1G93A mice, a well-known ALS mouse model. Although VCP exerts multiple functions, its regulation of ER formation and consequent protein synthesis has been shown to play the most important role in controlling dendritic spine formation and social and memory behaviors. Given that SOD1 mutation results in protein accumulation and aggregation, it may direct VCP to the protein degradation pathway, thereby impairing protein synthesis. Since we previously showed that the protein synthesis defects caused by Vcp deficiency can be improved by leucine supplementation, to confirm the role of the VCP-protein synthesis pathway in SOD1-linked ALS, we applied leucine supplementation to SOD1G93A mice and, similar to Vcp overexpression, we found that it extends SOD1G93A mouse lifespan. In addition, the phenotypes of reduced muscle strength and fewer NMJs of SOD1G93A mice are also improved by leucine supplementation. These results support the existence of crosstalk between SOD1 and VCP and suggest a critical role for protein synthesis in ASL. Our study also implies a potential therapeutic treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Leucina , Longevidade , Camundongos Transgênicos , Junção Neuromuscular , Fenótipo , Superóxido Dismutase-1 , Proteína com Valosina , Animais , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Camundongos , Junção Neuromuscular/metabolismo , Feminino , Masculino , Longevidade/genética , Leucina/farmacologia , Leucina/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
2.
PLoS Biol ; 21(8): e3002274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651441

RESUMO

Dendritic spines, the tiny and actin-rich protrusions emerging from dendrites, are the subcellular locations of excitatory synapses in the mammalian brain that control synaptic activity and plasticity. Dendritic spines contain a specialized form of endoplasmic reticulum (ER), i.e., the spine apparatus, required for local calcium signaling and that is involved in regulating dendritic spine enlargement and synaptic plasticity. Many autism-linked genes have been shown to play critical roles in synaptic formation and plasticity. Among them, KLHL17 is known to control dendritic spine enlargement during development. As a brain-specific disease-associated gene, KLHL17 is expected to play a critical role in the brain, but it has not yet been well characterized. In this study, we report that KLHL17 expression in mice is strongly regulated by neuronal activity and KLHL17 modulates the synaptic distribution of synaptopodin (SYNPO), a marker of the spine apparatus. Both KLHL17 and SYNPO are F-actin-binding proteins linked to autism. SYNPO is known to maintain the structure of the spine apparatus in mature spines and contributes to synaptic plasticity. Our super-resolution imaging using expansion microscopy demonstrates that SYNPO is indeed embedded into the ER network of dendritic spines and that KLHL17 is closely adjacent to the ER/SYNPO complex. Using mouse genetic models, we further show that Klhl17 haploinsufficiency and knockout result in fewer dendritic spines containing ER clusters and an alteration of calcium events at dendritic spines. Accordingly, activity-dependent dendritic spine enlargement and neuronal activation (reflected by extracellular signal-regulated kinase (ERK) phosphorylation and C-FOS expression) are impaired. In addition, we show that the effect of disrupting the KLHL17 and SYNPO association is similar to the results of Klhl17 haploinsufficiency and knockout, further strengthening the evidence that KLHL17 and SYNPO act together to regulate synaptic plasticity. In conclusion, our findings unravel a role for KLHL17 in controlling synaptic plasticity via its regulation of SYNPO and synaptic ER clustering and imply that impaired synaptic plasticity contributes to the etiology of KLHL17-related disorders.


Assuntos
Transtorno Autístico , Proteínas dos Microfilamentos , Animais , Camundongos , Actinas , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo , Espinhas Dendríticas , Genes fos , Hipertrofia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
3.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158982

RESUMO

Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Camundongos , Antivirais , SARS-CoV-2 , Receptor 3 Toll-Like , Genes src
4.
FEBS J ; 289(8): 2282-2300, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33511762

RESUMO

Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Humanos , Mamíferos , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
5.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935867

RESUMO

Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. There are no effective therapies to prevent or treat this disorder. Pathologically, CIPN is characterized by a "dying-back" axonopathy that begins at intra-epidermal nerve terminals of sensory neurons and progresses in a retrograde fashion. Calcium dysregulation constitutes a critical event in CIPN, but it is not known how chemotherapies such as paclitaxel alter intra-axonal calcium and cause degeneration. Here, we demonstrate that paclitaxel triggers Sarm1-dependent cADPR production in distal axons, promoting intra-axonal calcium flux from both intracellular and extracellular calcium stores. Genetic or pharmacologic antagonists of cADPR signaling prevent paclitaxel-induced axon degeneration and allodynia symptoms, without mitigating the anti-neoplastic efficacy of paclitaxel. Our data demonstrate that cADPR is a calcium-modulating factor that promotes paclitaxel-induced axon degeneration and suggest that targeting cADPR signaling provides a potential therapeutic approach for treating paclitaxel-induced peripheral neuropathy (PIPN).


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Degeneração Neural/patologia , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Canais de Cálcio/metabolismo , ADP-Ribose Cíclica/antagonistas & inibidores , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
6.
Front Immunol ; 12: 686060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211474

RESUMO

Toll-like receptor (TLR) signaling is critical for defense against pathogenic infection, as well as for modulating tissue development. Activation of different TLRs triggers common inflammatory responses such as cytokine induction. Here, we reveal differential impacts of TLR3 and TLR7 signaling on transcriptomic profiles in bone marrow-derived macrophages (BMDMs). Apart from self-regulation, TLR3, but not TLR7, induced expression of other TLRs, suggesting that TLR3 activation globally enhances innate immunity. Moreover, we observed diverse influences of TLR3 and TLR7 signaling on genes involved in methylation, caspase and autophagy pathways. We compared endogenous TLR3 and TLR7 by using CRISPR/Cas9 technology to knock in a dual Myc-HA tag at the 3' ends of mouse Tlr3 and Tlr7. Using anti-HA antibodies to detect endogenous tagged TLR3 and TLR7, we found that both TLRs display differential tissue expression and posttranslational modifications. C-terminal tagging did not impair TLR3 activity. However, it disrupted the interaction between TLR7 and myeloid differentiation primary response 88 (MYD88), the Tir domain-containing adaptor of TLR7, which blocked its downstream signaling necessary to trigger cytokine and chemokine expression. Our study demonstrates different properties for TLR3 and TLR7, and also provides useful mouse models for further investigation of these two RNA-sensing TLRs.


Assuntos
Epitopos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/fisiologia , Neurônios/metabolismo , Receptor 3 Toll-Like/fisiologia , Receptor 7 Toll-Like/fisiologia , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Epitopos/imunologia , Feminino , Perfilação da Expressão Gênica , Imunidade Inata , Macrófagos/imunologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
7.
Hum Mol Genet ; 29(23): 3793-3806, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331896

RESUMO

The Ras-Erk pathway is frequently overactivated in human tumors. Neurofibromatosis types 1 and 2 (NF1, NF2) are characterized by multiple tumors of Schwann cell origin. The NF1 tumor suppressor neurofibromin is a principal Ras-GAP accelerating Ras inactivation, whereas the NF2 tumor suppressor merlin is a scaffold protein coordinating multiple signaling pathways. We have previously reported that merlin interacts with Ras and p120RasGAP. Here, we show that merlin can also interact with the neurofibromin/Spred1 complex via merlin-binding sites present on both proteins. Further, merlin can directly bind to the Ras-binding domain (RBD) and the kinase domain (KiD) of Raf1. As the third component of the neurofibromin/Spred1 complex, merlin cannot increase the Ras-GAP activity; rather, it blocks Ras binding to Raf1 by functioning as a 'selective Ras barrier'. Merlin-deficient Schwann cells require the Ras-Erk pathway activity for proliferation. Accordingly, suppression of the Ras-Erk pathway likely contributes to merlin's tumor suppressor activity. Taken together, our results, and studies by others, support targeting or co-targeting of this pathway as a therapy for NF2 inactivation-related tumors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurofibromina 1/metabolismo , Neurofibromina 2/metabolismo , Proteínas Repressoras/metabolismo , Células de Schwann/patologia , Proteínas ras/metabolismo , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , Neurofibromina 1/genética , Neurofibromina 2/genética , Ratos , Proteínas Repressoras/genética , Células de Schwann/metabolismo , Proteínas ras/genética
8.
Cell Rep ; 31(13): 107835, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610136

RESUMO

Neurofibromatosis type 1 (NF1) is a dominant genetic disorder manifesting, in part, as cognitive defects. Previous study indicated that neurofibromin (NF1 protein) interacts with valosin-containing protein (VCP)/P97 to control dendritic spine formation, but the mechanism is unknown. Here, using Nf1+/- mice and transgenic mice overexpressing wild-type Vcp/p97, we demonstrate that neurofibromin acts with VCP to control endoplasmic reticulum (ER) formation and consequent protein synthesis and regulates dendritic spine formation, thereby modulating contextual fear memory and social interaction. To validate the role of protein synthesis, we perform leucine supplementation in vitro and in vivo. Our results suggest that leucine can effectively enter the brain and increase protein synthesis and dendritic spine density of Nf1+/- neurons. Contextual memory and social behavior of Nf1+/- mice are also restored by leucine supplementation. Our study suggests that the "ER-protein synthesis" pathway downstream of neurofibromin and VCP is a critical regulator of dendritic spinogenesis and brain function.


Assuntos
Medo/fisiologia , Leucina/administração & dosagem , Memória/fisiologia , Neurofibromina 1/metabolismo , Biossíntese de Proteínas , Comportamento Social , Proteína com Valosina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Suplementos Nutricionais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Camundongos Mutantes , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , Sirolimo/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
9.
Cell Rep ; 29(1): 34-48.e4, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577954

RESUMO

Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.


Assuntos
Potenciais de Ação/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Memória/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo/fisiologia , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Tálamo/fisiologia
10.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30783609

RESUMO

While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting protein. RNAi studies demonstrate that both VCP and its cofactor NSFL1C/p47 are necessary for the ability of PINK1 to increase dendritic complexity. Moreover, PINK1 regulates phosphorylation of p47, but not the VCP co-factor UFD1. Although neither VCP nor p47 interact directly with PKA, we found that PINK1 binds and phosphorylates the catalytic subunit of PKA at T197 [PKAcat(pT197)], a site known to activate the PKA holoenzyme. PKA in turn phosphorylates p47 at a novel site (S176) to regulate dendritic complexity. Given that PINK1 physically interacts with both the PKA holoenzyme and the VCP-p47 complex to promote dendritic arborization, we propose that PINK1 scaffolds a novel PINK1-VCP-PKA-p47 signaling pathway to orchestrate dendritogenesis in neurons. These findings highlight an important mechanism by which proteins genetically implicated in Parkinson's disease (PD; PINK1) and frontotemporal dementia (FTD; VCP) interact to support the health and maintenance of neuronal arbors.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Proteínas Quinases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/metabolismo
11.
Sci Rep ; 6: 33592, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27627962

RESUMO

Functional synapse formation requires tight coordination between pre- and post-synaptic termini. Previous studies have shown that postsynaptic expression of heparan sulfate proteoglycan syndecan-2 (SDC2) induces dendritic spinogenesis. Those SDC2-induced dendritic spines are frequently associated with presynaptic termini. However, how postsynaptic SDC2 accelerates maturation of corresponding presynaptic termini is unknown. Because fibroblast growth factor 22 (FGF22), a heparan sulfate binding growth factor, has been shown to act as a presynaptic organizer released from the postsynaptic site, it seems possible that postsynaptic SDC2 presents FGF22 to the presynaptic FGF receptor to promote presynaptic differentiation. Here, we show that postsynaptic SDC2 uses its ectodomain to interact with and facilitate dendritic filopodial targeting of FGF22, triggering presynaptic maturation. Since SDC2 also enhances filopodial targeting of NMDAR via interaction with the CASK-mLIN7-MINT1 adaptor complex, presynaptic maturation promoted by FGF22 further feeds back to activate NMDAR at corresponding postsynaptic sites through increased neurotransmitter release and, consequently, promotes the dendritic filopodia-spines (F-S) transition. Meanwhile, via regulation of the KIF17 motor, CaMKII (activated by the NMDAR pathway) may further facilitate FGF22 targeting to dendritic filopodia that receive presynaptic stimulation. Our study suggests a positive feedback that promotes the coordination of postsynaptic and presynaptic differentiation.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Sindecana-2/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Espinhas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Cinesinas , Camundongos , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Pseudópodes/metabolismo , Ratos Sprague-Dawley , Sindecana-2/química
12.
Sci Rep ; 6: 32405, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561456

RESUMO

Inflammasomes are the protein assemblies that consist of inflammasome sensors, adaptor apoptosis-associated speck-like proteins containing a CARD (ASC) and inflammasome caspase. Inflammasomes sense multiple danger signals via various inflammasome sensors and consequently use caspase to trigger proteolytic processing and secretion of IL-1ß cytokines. Recent studies have suggested that neurons use their own innate immune system to detect danger signals and regulate neuronal morphology. Here, we investigate whether inflammasomes, the critical components of innate immunity, participate in regulation of neuronal morphology and function. Among various sensors, Absent in melanoma 2 (Aim2) expression in neurons is most prominent. Adding synthetic double-stranded DNA (dsDNA) to cultured neurons induces IL-1ß secretion in an AIM2-dependent manner and consequently downregulates dendritic growth but enhances axon extension. The results of Aim2 knockout and knockdown show that AIM2 acts cell-autonomously to regulate neuronal morphology. Behavioral analyses further reveal that Aim2-/- mice exhibit lower locomotor activity, increased anxious behaviors and reduced auditory fear memory. In conclusion, our study suggests that AIM2 inflammasomes regulate neuronal morphology and influence mouse behaviors.


Assuntos
Ansiedade/genética , Proteínas de Ligação a DNA/genética , Inflamassomos/genética , Memória , Neurônios/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética
13.
Nat Commun ; 7: 11020, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984393

RESUMO

Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Animais , Cicloeximida/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Canais Iônicos/metabolismo , Leucina/farmacologia , Camundongos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Ratos , Sirolimo/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína com Valosina , Proteínas rab de Ligação ao GTP/metabolismo
14.
Nat Neurosci ; 17(2): 240-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24441682

RESUMO

The neuron-specific transcription factor T-box brain 1 (TBR1) regulates brain development. Disruptive mutations in the TBR1 gene have been repeatedly identified in patients with autism spectrum disorders (ASDs). Here, we show that Tbr1 haploinsufficiency results in defective axonal projections of amygdalar neurons and the impairment of social interaction, ultrasonic vocalization, associative memory and cognitive flexibility in mice. Loss of a copy of the Tbr1 gene altered the expression of Ntng1, Cntn2 and Cdh8 and reduced both inter- and intra-amygdalar connections. These developmental defects likely impair neuronal activation upon behavioral stimulation, which is indicated by fewer c-FOS-positive neurons and lack of GRIN2B induction in Tbr1(+/-) amygdalae. We also show that upregulation of amygdalar neuronal activity by local infusion of a partial NMDA receptor agonist, d-cycloserine, ameliorates the behavioral defects of Tbr1(+/-) mice. Our study suggests that TBR1 is important in the regulation of amygdalar axonal connections and cognition.


Assuntos
Tonsila do Cerebelo/patologia , Axônios/patologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Proteínas de Ligação a DNA/deficiência , Animais , Antimetabólitos/uso terapêutico , Axônios/metabolismo , Caderinas/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Contactina 2/metabolismo , Ciclosserina/uso terapêutico , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Fatores de Transcrição MEF2/metabolismo , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Netrinas , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas com Domínio T
15.
J Neurosci ; 33(28): 11479-93, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843519

RESUMO

Toll-like receptors (TLRs) recognize both pathogen- and danger-associated molecular patterns and induce innate immune responses. Some TLRs are expressed in neurons and regulate neurodevelopment and neurodegeneration. However, the downstream signaling pathways and effectors for TLRs in neurons are still controversial. In this report, we provide evidence that TLR7 negatively regulates dendrite growth through the canonical myeloid differentiation primary response gene 88 (Myd88)-c-Fos-interleukin (IL)-6 pathway. Although both TLR7 and TLR8 recognize single-stranded RNA (ssRNA), the results of quantitative reverse transcription-PCR suggested that TLR7 is the major TLR recognizing ssRNA in brains. In both in vitro cultures and in utero electroporation experiments, manipulation of TLR7 expression levels was sufficient to alter neuronal morphology, indicating the presence of intrinsic TLR7 ligands. Besides, the RNase A treatment that removed ssRNA in cultures promoted dendrite growth. We also found that the addition of ssRNA and synthetic TLR7 agonists CL075 and loxoribine, but not R837 (imiquimod), to cultured neurons specifically restricted dendrite growth via TLR7. These results all suggest that TLR7 negatively regulates neuronal differentiation. In cultured neurons, TLR7 activation induced IL-6 and TNF-α expression through Myd88. Using Myd88-, IL-6-, and TNF-α-deficient neurons, we then demonstrated the essential roles of Myd88 and IL-6, but not TNF-α, in the TLR7 pathway to restrict dendrite growth. In addition to neuronal morphology, TLR7 knockout also affects mouse behaviors, because young mutant mice ∼2 weeks of age exhibited noticeably lower exploratory activity in an open field. In conclusion, our study suggests that TLR7 negatively regulates dendrite growth and influences cognition in mice.


Assuntos
Dendritos/fisiologia , Regulação para Baixo/fisiologia , Inibidores do Crescimento/fisiologia , Interleucina-6/fisiologia , Glicoproteínas de Membrana/fisiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Transdução de Sinais/fisiologia , Receptor 7 Toll-Like/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
16.
J Neurochem ; 126(1): 102-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23600800

RESUMO

ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of painful stimuli and are modulated by extracellular algogenic substances, via changes in the receptor phosphorylation state. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in interacting and controlling P2X3 receptor expression and function in mouse trigeminal ganglia. Most ganglion neurons in situ or in culture co-expressed P2X3 and CASK. CASK was immunoprecipitated with P2X3 receptors from trigeminal ganglia and from P2X3/CASK-cotransfected human embryonic kidney (HEK) cells. Recombinant P2X3/CASK expression in HEK cells increased serine phosphorylation of P2X3 receptors, typically associated with receptor upregulation. CASK deletion mutants also enhanced P2X3 subunit expression. After silencing CASK, cell surface P2X3 receptor expression was decreased, which is consistent with depressed P2X3 currents. The reduction in P2X3 expression levels was reversed by the proteasomal inhibitor MG-132. Moreover, neuronal CASK/P2X3 interaction was up-regulated by nerve growth factor (NGF) signaling and down-regulated by P2X3 agonist-induced desensitization. These data suggest a novel interaction between CASK and P2X3 receptors with positive outcome for receptor stability and function. As CASK-mediated control of P2X3 receptors was dependent on the receptor activation state, CASK represents an intracellular gateway to regulate purinergic nociceptive signaling.


Assuntos
Guanilato Quinases/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Biotinilação , Inibidores de Cisteína Proteinase/farmacologia , Imunofluorescência , Gânglios Sensitivos/citologia , Gânglios Sensitivos/metabolismo , Inativação Gênica , Guanilato Quinases/antagonistas & inibidores , Guanilato Quinases/genética , Células HEK293 , Humanos , Imunoprecipitação , Leupeptinas/farmacologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Receptores Purinérgicos P2X3/genética , Transfecção , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
17.
J Biomed Sci ; 19: 33, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22449146

RESUMO

Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Contratura/congênito , Espinhas Dendríticas/metabolismo , Morfogênese , Miosite de Corpos de Inclusão/congênito , Neurofibromina 1/metabolismo , Neurônios , Oftalmoplegia/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Contratura/genética , Contratura/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Redes e Vias Metabólicas , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromina 1/genética , Neurônios/metabolismo , Neurônios/patologia , Oftalmoplegia/genética , Proteína com Valosina
18.
J Clin Invest ; 121(12): 4820-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22105171

RESUMO

Inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder characterized by progressive myopathy that is often accompanied by bone weakening and/or frontotemporal dementia. Although it is known to be caused by mutations in the gene encoding valosin-containing protein (VCP), the underlying disease mechanism remains elusive. Like IBMPFD, neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. Neurofibromin, the protein encoded by the NF1 gene, has been shown to regulate synaptogenesis. Here, we show that neurofibromin and VCP interact and work together to control the density of dendritic spines. Certain mutations identified in IBMPFD and NF1 patients reduced the interaction between VCP and neurofibromin and impaired spinogenesis. The functions of neurofibromin and VCP in spinogenesis were shown to correlate with the learning disability and dementia phenotypes seen in patients with IBMPFD. Consistent with the previous finding that treatment with a statin rescues behavioral defects in Nf1(+/-) mice and providing further support for our hypothesis that there is crosstalk between neurofibromin and VCP, statin exposure neutralized the effect of VCP knockdown on spinogenesis in cultured hippocampal neurons. The data presented here demonstrate that there is a link between IBMPFD and NF1 and indicate a role for VCP in synapse formation.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Contratura/congênito , Dendritos/ultraestrutura , Demência Frontotemporal/genética , Miosite de Corpos de Inclusão/congênito , Neurofibromatose 1/genética , Neurofibromina 1/fisiologia , Oftalmoplegia/genética , Osteíte Deformante/genética , Animais , Região CA1 Hipocampal/ultraestrutura , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/ultraestrutura , Colesterol/fisiologia , Contratura/genética , Contratura/patologia , Dendritos/metabolismo , Demência Frontotemporal/patologia , Humanos , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia , Neurofibromatose 1/patologia , Neurofibromatose 1/psicologia , Neurofibromina 1/deficiência , Neurofibromina 1/genética , Oftalmoplegia/patologia , Osteíte Deformante/patologia , Mutação Puntual , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Células Piramidais/efeitos dos fármacos , Células Piramidais/ultraestrutura , Ratos , Sinapses/ultraestrutura , Proteína com Valosina
19.
J Neurosci Res ; 88(11): 2364-73, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20623620

RESUMO

Calcium/calmodulin-dependent serine kinase (CASK), a causative gene in X-linked mental retardation, carries out multiple functions in neurons, including vesicle trafficking of ion channels, synapse formation, and gene transcription. From a yeast two-hybrid screen, Krüppel-like zinc finger protein B cell lymphoma/COUP-TF-interacting protein 1 (Bcl11A/CTIP1) was identified as a CASK binding protein. Through alternative splicing, a single Bcl11A gene encodes two major protein products in neurons, Bcl11A-S and Bcl11A-L. CASK interacted with both Bcl11A-S and Bcl11A-L in transfected COS cells and brain. Immunofluorescence staining further indicated the colocalization of CASK and Bcl11A in the nuclei of neurons. These studies supported an interaction between CASK and Bcl11A in vivo. Bcl11A-L has previously been shown to play a role in gene transcription as well as axon outgrowth and branching. Here, we further show that Bcl11A-L rearranges the distribution of nuclear actin, which may be related to the function of Bcl11A-L in gene expression. More importantly, using cultured hippocampal neurons as a model system, we show that CASK enhances the ability of Bcl11A-L to restrict axon outgrowth and branching. Interruption of the interaction between CASK and Bcl11A increased the outgrowth and branching of axons, suggesting that the interaction between CASK and Bcl11A controls axon arborization. In conclusion, our results suggest that, through the interaction with Bcl11A, CASK plays a role in axonogenesis, which may be related to brain anatomical characteristics in humans.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/genética , Guanilato Quinases/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Nucleares/genética , Actinas/metabolismo , Adulto , Animais , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunoprecipitação , Neurogênese/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , Plasmídeos/genética , Gravidez , Ratos , Proteínas Repressoras , Frações Subcelulares/metabolismo , Transfecção
20.
J Neurochem ; 114(5): 1381-92, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20534004

RESUMO

While neuronal activity regulates neurite outgrowth and branching, the details of the underlying mechanisms are still largely unclear. This study investigated the effect of the glutamate receptors on neuritogenesis using cultured hippocampal neurons. At 3-4 days in vitro, NMDA treatment promoted axon branching but not primary axon extension. In contrast, blockade of the NMDA receptor (NMDAR) by AP5 treatment enhanced primary axon extension. NMDAR activation also increased dendrite number and total dendrite length. These results suggest that NMDAR controls axon and dendrite morphogenesis. A previous study demonstrated that knockdown of the zinc finger transcription factor B cell lymphoma 11A-long (Bcl11A-L) reduces deleted in colorectal cancer (DCC) and microtubule-associated protein (MAP) 1b expression, thereby promoting axon branching. Here, glutamate stimulation down-regulated the levels of the Bcl11A-L, DCC, MAP1b, and MAP2c proteins. Over-expression of either Bcl11A-L or DCC countered the effect of NMDA or glutamate on axon branching and dendrite outgrowth, indicating that the Bcl11A-L/DCC pathway is an important downstream effector of glutamate receptors in neurite arborization. Because knockdown of Bcl11A-L did not down-regulate MAP2c, our results suggest that glutamate receptors also use a Bcl11A-L-independent pathway to control dendrite outgrowth. To summarize, this study reveals novel pathways downstream of glutamate receptors that regulate axon and dendrite arborization.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/fisiologia , Dendritos/fisiologia , Proteínas Nucleares/fisiologia , Receptores de Glutamato/fisiologia , Dedos de Zinco/fisiologia , Animais , Crescimento Celular , Células Cultivadas , Receptor DCC , Ácido Glutâmico/farmacologia , N-Metilaspartato/fisiologia , Ratos , Receptores de Superfície Celular/fisiologia , Proteínas Repressoras , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA