Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Neurotherapeutics ; 21(3): e00336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368171

RESUMO

A challenging complication in patients with peripheral compressive neuropathy is neuropathic pain. Excessive neuroinflammation at the injury site worsens neuropathic pain and impairs function. Currently, non-invasive modulation techniques like transcutaneous electrical nerve stimulation (TENS) have shown therapeutic promise with positive results. However, the underlying regulatory molecular mechanism for pain relief remains complex and unexplored. This study aimed to validate the therapeutic effect of ultrahigh frequency (UHF)-TENS in chronic constriction injury of the rat sciatic nerve. Alleviation of mechanical allodynia was achieved through the application of UHF-TENS, lasting for 3 days after one session of therapy and 4 days after two sessions, without causing additional damage to the myelinated axon structure. The entire tissue collection schedule was divided into four time points: nerve exposure surgery, 7 days after nerve ligation, and 1 and 5 days after one session of UHF therapy. Significant reductions in pain-related neuropeptides, MEK, c-Myc, c-FOS, COX2, and substance P, were observed in the injured DRG neurons after UHF therapy. RNA sequencing of differential gene expression in sensory neurons revealed significant downregulation in Cables, Pik3r1, Vps4b, Tlr7, and Ezh2 after UHF therapy, while upregulation was observed in Nfkbie and Cln3. UHF-TENS effectively and safely relieved neuropathic pain without causing further nerve damage. The decreased production of pain-related neuropeptides within the DRG provided the therapeutic benefit. Possible molecular mechanisms behind UHF-TENS may result from the modulation of the NF-κB complex, toll-like receptor-7, and phosphoinositide 3-kinase/Akt signaling pathways. These results suggest the neuromodulatory effects of UHF-TENS in rat sciatic nerve chronic constriction injury, including alleviation of neuropathic pain, amelioration of pain-related neuropeptides, and regulation of neuroinflammatory gene expression. In combination with the regulation of related neuroinflammatory genes, UHF-TENS could become a new modality for enhancing the treatment of neuropathic pain in the future.


Assuntos
Neuralgia , Ratos Sprague-Dawley , Estimulação Elétrica Nervosa Transcutânea , Animais , Estimulação Elétrica Nervosa Transcutânea/métodos , Neuralgia/terapia , Ratos , Masculino , Hiperalgesia/terapia , Gânglios Espinais/metabolismo , Nervo Isquiático/lesões
2.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257315

RESUMO

Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products for biomedical research are rare, and their biological functions remain largely unexamined. In this study, we characterized a commercial tilapia skin collagen using SDS-PAGE and fibril formation assays and evaluated its effects on skin fibroblast adhesion, proliferation, and migration, comparing it with commercial collagen from rat tails, porcine skin, and bovine skin. The results showed that tilapia skin collagen is a type I collagen, similar to rat tail collagen, and has a faster fibril formation rate and better-promoting effects on cell migration than porcine and bovine skin collagen. We also confirmed its application in a 3D culture for kidney cells' spherical cyst formation, fibroblast-induced gel contraction, and tumor spheroid interfacial invasion. Furthermore, we demonstrated that the freeze-dried tilapia skin collagen scaffold improved wound closure in a mouse excisional wound model, similar to commercial porcine or bovine collagen wound dressings. In conclusion, tilapia skin collagen is an ideal biomaterial for biomedical research.


Assuntos
Pesquisa Biomédica , Tilápia , Camundongos , Ratos , Suínos , Animais , Bovinos , Mamíferos , Colágeno/farmacologia , Pele , Modelos Animais de Doenças
3.
Ann Plast Surg ; 89(4): 373-375, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149977

RESUMO

ABSTRACT: Metabolic disturbance in patients of amyotrophic lateral sclerosis is a rare presentation that might be related to disease progression and outcomes. Hypermetabolic status after major burn injury remains a critical issue in the modern medical care. Here, we present a rare case of a patient sporadic amyotrophic lateral sclerosis who suffered from minor burn injury (8% total body surface area), developing critical hyperosmolar hyperglycemic state during early hospitalization. Newly diagnosed diabetes is established and found related to the underlying disease of this patient. The accumulative metabolic alteration among vulnerable patients of amyotrophic lateral sclerosis and burn injury is noteworthy. Judicious monitoring of fluid and metabolic status helps to prevent the occurrence of acute hyperosmolar hyperglycemic state.


Assuntos
Esclerose Lateral Amiotrófica , Queimaduras , Coma Hiperglicêmico Hiperosmolar não Cetótico , Esclerose Lateral Amiotrófica/complicações , Queimaduras/complicações , Progressão da Doença , Humanos , Coma Hiperglicêmico Hiperosmolar não Cetótico/complicações , Coma Hiperglicêmico Hiperosmolar não Cetótico/diagnóstico
4.
Biomedicines ; 10(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009539

RESUMO

The failure of peripheral nerve regeneration is often associated with the inability to generate a permissive molecular and cellular microenvironment for nerve repair. Autologous therapies, such as platelet-rich plasma (PRP) or its derivative platelet-rich growth factors (PRGF), may improve peripheral nerve regeneration via unknown mechanistic roles and actions in macrophage polarization. In the current study, we hypothesize that excessive and prolonged inflammation might result in the failure of pro-inflammatory M1 macrophage transit to anti-inflammatory M2 macrophages in large nerve defects. PRGF was used in vitro at the time the unpolarized macrophages (M0) macrophages were induced to M1 macrophages to observe if PRGF altered the secretion of cytokines and resulted in a phenotypic change. PRGF was also employed in the nerve conduit of a rat sciatic nerve transection model to identify alterations in macrophages that might influence excessive inflammation and nerve regeneration. PRGF administration reduced the mRNA expression of tumor necrosis factor-α (TNFα), interleukin-1ß (IL-1ß), and IL-6 in M0 macrophages. Increased CD206 substantiated the shift of pro-inflammatory cytokines to the M2 regenerative macrophage. Administration of PRGF in the nerve conduit after rat sciatic nerve transection promoted nerve regeneration by improving nerve gross morphology and its targeted gastrocnemius muscle mass. The regenerative markers were increased for regrown axons (protein gene product, PGP9.5), Schwann cells (S100ß), and myelin basic protein (MBP) after 6 weeks of injury. The decreased expression of TNFα, IL-1ß, IL-6, and CD68+ M1 macrophages indicated that the inflammatory microenvironments were reduced in the PRGF-treated nerve tissue. The increase in RECA-positive cells suggested the PRGF also promoted angiogenesis during nerve regeneration. Taken together, these results indicate the potential role and clinical implication of autologous PRGF in regulating inflammatory microenvironments via macrophage polarization after nerve transection.

5.
Stem Cell Res Ther ; 13(1): 205, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578348

RESUMO

BACKGROUND: Muscle denervation from trauma and motor neuron disease causes disabling morbidities. A limiting step in functional recovery is the regeneration of neuromuscular junctions (NMJs) for reinnervation. Stem cells have the potential to promote these regenerative processes, but current approaches have limited success, and the optimal types of stem cells remain to be determined. Neural crest stem cells (NCSCs), as the developmental precursors of the peripheral nervous system, are uniquely advantageous, but the role of NCSCs in neuromuscular regeneration is not clear. Furthermore, a cell delivery approach that can maintain NCSC survival upon transplantation is critical. METHODS: We established a streamlined protocol to derive, isolate, and characterize functional p75+ NCSCs from human iPSCs without genome integration of reprogramming factors. To enhance survival rate upon delivery in vivo, NCSCs were centrifuged in microwell plates to form spheroids of desirable size by controlling suspension cell density. Human bone marrow mesenchymal stem cells (MSCs) were also studied for comparison. NCSC or MSC spheroids were injected into the gastrocnemius muscle with denervation injury, and the effects on NMJ formation and functional recovery were investigated. The spheroids were also co-cultured with engineered neuromuscular tissue to assess effects on NMJ formation in vitro. RESULTS: NCSCs cultured in spheroids displayed enhanced secretion of soluble factors involved in neuromuscular regeneration. Intramuscular transplantation of spheroids enabled long-term survival and retention of NCSCs, in contrast to the transplantation of single-cell suspensions. Furthermore, NCSC spheroids significantly improved functional recovery after four weeks as shown by gait analysis, electrophysiology, and the rate of NMJ innervation. MSC spheroids, on the other hand, had insignificant effect. In vitro co-culture of NCSC or MSC spheroids with engineered myotubes and motor neurons further evidenced improved innervated NMJ formation with NCSC spheroids. CONCLUSIONS: We demonstrate that stem cell type is critical for neuromuscular regeneration and that NCSCs have a distinct advantage and therapeutic potential to promote reinnervation following peripheral nerve injury. Biophysical effects of spheroidal culture, in particular, enable long-term NCSC survival following in vivo delivery. Furthermore, synthetic neuromuscular tissue, or "tissues-on-a-chip," may offer a platform to evaluate stem cells for neuromuscular regeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Denervação , Humanos , Crista Neural , Neurogênese/fisiologia
6.
J Neuroinflammation ; 18(1): 238, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656124

RESUMO

BACKGROUND: Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. METHODS: We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation. RESULTS: Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group. CONCLUSIONS: Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro.


Assuntos
Axônios/metabolismo , Histona Desacetilases/metabolismo , NF-kappa B/metabolismo , Regeneração Nervosa/fisiologia , Fenilbutiratos/farmacologia , Remielinização/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , NF-kappa B/antagonistas & inibidores , Regeneração Nervosa/efeitos dos fármacos , Fenilbutiratos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Remielinização/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/patologia , Neuropatia Ciática , Células THP-1
8.
Nat Biomed Eng ; 5(8): 864-879, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33737730

RESUMO

Muscle loss and impairment resulting from traumatic injury can be alleviated by therapies using muscle stem cells. However, collecting sufficient numbers of autologous myogenic stem cells and expanding them efficiently has been challenging. Here we show that myogenic stem cells (predominantly Pax7+ cells)-which were selectively expanded from readily obtainable dermal fibroblasts or skeletal muscle stem cells using a specific cocktail of small molecules and transplanted into muscle injuries in adult, aged or dystrophic mice-led to functional muscle regeneration in the three animal models. We also show that sustained release of the small-molecule cocktail in situ through polymer nanoparticles led to muscle repair by inducing robust activation and expansion of resident satellite cells. Chemically induced stem cell expansion in vitro and in situ may prove to be advantageous for stem cell therapies that aim to regenerate skeletal muscle and other tissues.


Assuntos
Músculo Esquelético/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/citologia , Animais , Reprogramação Celular/efeitos dos fármacos , Colforsina/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Doenças Musculares/terapia , Nanopartículas/química , Fator de Transcrição PAX7/metabolismo , Polímeros/química , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Ácido Valproico/farmacologia
9.
Theranostics ; 10(6): 2817-2831, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194837

RESUMO

Rationale: The formation of adipose-derived stem cells (ASCs) into spheres on a chitosan-coated microenvironment promoted ASCs differentiation into a mixed population of neural lineage-like cells (NLCs), but the underline mechanism is still unknown. Since the fibroblast growth factor 9 (FGF9) and fibroblast growth factor receptors (FGFRs) play as key regulators of neural cell fate during embryo development and stem cell differentiation, the current study aims to reveal the interplay of FGF9 and FGFRs for promoting peripheral nerve regeneration. Methods: Different concentration of FGF9 peptide (10, 25, 50, 100 ng/mL) were added during NLCs induction (FGF9-NLCs). The FGFR expressions and potential signaling were studied by gene and protein expressions as well as knocking down by specific FGFR siRNA or commercial inhibitors. FGF9-NLCs were fluorescent labeled and applied into a nerve conduit upon the injured sciatic nerves of experimental rats. Results: The FGFR2 and FGFR4 were significantly increased during NLCs induction. The FGF9 treated FGF9-NLCs spheres became smaller and changed into Schwann cells (SCs) which expressed S100ß and GFAP. The specific silencing of FGFR2 diminished FGF9-induced Akt phosphorylation and inhibited the differentiation of SCs. Transplanted FGF9-NLCs participated in myelin sheath formation, enhanced axonal regrowth and promoted innervated muscle regeneration. The knockdown of FGFR2 in FGF9-NLCs led to the abolishment of nerve regeneration. Conclusions: Our data therefore demonstrate the importance of FGF9 in the determination of SC fate via the FGF9-FGFR2-Akt pathway and reveal the therapeutic benefit of FGF9-NLCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator 9 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Mesenquimais , Nervo Isquiático , Animais , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões
10.
Stem Cell Res Ther ; 10(1): 234, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376835

RESUMO

BACKGROUND: Neurovascular unit restoration is crucial for nerve regeneration, especially in critical gaps of injured peripheral nerve. Multipotent vascular stem cells (MVSCs) harvested from an adult blood vessel are involved in vascular remodeling; however, the therapeutic benefit for nerve regeneration is not clear. METHODS: MVSCs were isolated from rats expressing green fluorescence protein (GFP), expanded, mixed with Matrigel matrix, and loaded into the nerve conduits. A nerve autograft or a nerve conduit (with acellular matrigel or MVSCs in matrigel) was used to bridge a transected sciatic nerve (10-mm critical gap) in rats. The functional motor recovery and cell fate in the regenerated nerve were investigated to understand the therapeutic benefit. RESULTS: MVSCs expressed markers such as Sox 17 and Sox10 and could differentiate into neural cells in vitro. One month following MVSC transplantation, the compound muscle action potential (CMAP) significantly increased as compared to the acellular group. MVSCs facilitated the recruitment of Schwann cell to regenerated axons. The transplanted cells, traced by GFP, differentiated into perineurial cells around the bundles of regenerated myelinated axons. In addition, MVSCs enhanced tight junction formation as a part of the blood-nerve barrier (BNB). Furthermore, MVSCs differentiated into perivascular cells and enhanced microvessel formation within regenerated neurovascular bundles. CONCLUSIONS: In rats with peripheral nerve injuries, the transplantation of MVSCs into the nerve conduits improved the recovery of neuromuscular function; MVSCs differentiated into perineural cells and perivascular cells and enhanced the formation of tight junctions in perineural BNB. This study demonstrates the in vivo therapeutic benefit of adult MVSCs for peripheral nerve regeneration and provides insight into the role of MVSCs in BNB regeneration.


Assuntos
Regeneração Nervosa/fisiologia , Potenciais de Ação , Animais , Aorta/citologia , Axônios/fisiologia , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/transplante , Músculos/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Recuperação de Função Fisiológica , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Junções Íntimas/fisiologia
12.
Ann Plast Surg ; 82(1S Suppl 1): S39-S44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461461

RESUMO

BACKGROUND: Surgical excision with adjuvant radiotherapy has gained attention as an effective treatment of keloid. The Asian population is challenged with a high incidence of keloid occurrence with a specific genetic predominance. The annual reported incidence of new keloid cases in Taiwan is around 30,000, but the disease control rate and effectiveness by means of surgical excision with adjuvant radiotherapy is not yet clear. METHODS: A retrospective chart review of the included consecutive keloid patients receiving surgical excision and radiotherapy was performed from 2013 to 2016 in a single institute. The reported risk factors were collected to investigate according to the outcome analysis. The Vancouver Scar Scale and the Japan Scar Workshop (JSW) Scar Scale were used to evaluate the correlation with keloid recurrence. RESULTS: In this series, the overall recurrence rate was 32%, reported with an average follow-up of 28 months. Independent risk factors varied according to the different outcome variables. Only JSW classification score independently predicted the risk of keloid recurrence (odds ratio, 1.305; P = 0.02). Both the Vancouver Scar Scale and the JSW system showed a good correlation with keloid recurrence (correlation efficiency, 0.529 and 0.54; P = 0.0437 and 0.0165, respectively). CONCLUSIONS: This preliminary report revealed convincing evidence of feasibility and effectiveness of applying adjuvant radiotherapy after keloid excision in the Taiwanese population. A more delicate biological equivalent dose of radiotherapy with an effective local control should be considered to improve the final outcome.


Assuntos
Procedimentos Cirúrgicos Dermatológicos/métodos , Queloide/epidemiologia , Queloide/radioterapia , Recidiva , Adulto , Bases de Dados Factuais , Estética , Estudos de Viabilidade , Feminino , Seguimentos , Hospitais Universitários , Humanos , Queloide/cirurgia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Curva ROC , Dosagem Radioterapêutica , Radioterapia Adjuvante , Reoperação/estatística & dados numéricos , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Taiwan , Resultado do Tratamento
13.
Plast Reconstr Surg Glob Open ; 4(11): e1099, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27975015

RESUMO

BACKGROUND: Although clinical assessment remains the gold standard for monitoring the circulation of free flaps, several adjunct techniques promote timely salvage by detecting circulation compromise early. The objective of this systematic review was to evaluate the efficacy of an implantable Doppler probe for postoperatively monitoring free flaps. MATERIALS AND METHODS: English-language articles evaluating the efficacy of implantable Doppler probes compared with clinical assessment for postoperatively monitoring free flaps were analyzed. The outcome measures were total flap failure rates, salvage rates, sensitivity, false-positive rates, and positive likelihood ratios. RESULTS: Of the 504 citations identified, 6 comparative studies were included for meta-analysis. An implantable Doppler probe significantly lowered the flap failure rate (risk ratio: 0.40; 95% confidence interval: 0.21-0.75) and raised the successful salvage rate (risk ratio: 1.73; 95% confidence interval: 1.16-2.59). Pooled sensitivity was higher (1.00 vs 0.98), the positive likelihood ratio was lower (72.16 vs 220.48), and the false-positive rate was higher (0.01 vs 0) in the implantable Doppler probe group than in the clinical assessment group. CONCLUSION: An implantable Doppler probe is significantly more efficacious than clinical assessment for postoperatively monitoring free flaps.

14.
Stem Cell Res Ther ; 7(1): 72, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27188874

RESUMO

BACKGROUND: In plastic surgery, skin flap is an important approach to reconstructive wound repairs. The rat dorsal skin flap is a clinically relevant and popular animal model to investigate and evaluate flap survival and necrosis. Nonetheless, flap survival is often unstable with unpredictable outcomes, regardless of previous attempts at design modification. METHODS & RESULTS: In the present study, we report a novel flap chamber that provides stable and reproducible outcomes by separating the dorsal skin flap from its surrounding skin by in situ immobilization. The flap chamber blocks circulation that disturbs flap ischemia from both basal and lateral sides of the flap tissue. Demarcation of skin necrosis is macroscopically evident on the flap and supported by distinct changes in histological architecture under microscopic examination. The utility of the novel skin flap chamber is further proven by applying it to the examination of flap survival in streptozotocin-induced diabetic rats with an increase in skin necrosis. The flap chamber also affords size modifications where a narrower flap chamber increases ischemia and provides manipulable therapeutic windows for studying cell therapies. Accordingly, intradermal injection of endothelial cells 3 days before flap ischemia significantly increases the survival of skin flaps. CONCLUSIONS: The novel flap chamber not only may stabilize the skin flap and provide reproducible outcomes that overcome the shortfalls of the traditional ischemic flap but also may afford size modifications that support research designs and test therapeutic approaches to regenerative repair.


Assuntos
Procedimentos Cirúrgicos Dermatológicos/métodos , Diabetes Mellitus Experimental/cirurgia , Necrose/prevenção & controle , Retalhos Cirúrgicos/transplante , Ferida Cirúrgica/cirurgia , Cicatrização , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Sobrevivência de Enxerto , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Injeções Intradérmicas , Masculino , Necrose/imunologia , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Reprodutibilidade dos Testes , Pele/imunologia , Pele/metabolismo , Estreptozocina , Ferida Cirúrgica/complicações , Ferida Cirúrgica/imunologia , Ferida Cirúrgica/patologia
15.
Sci Rep ; 5: 14985, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26447335

RESUMO

Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage.


Assuntos
Tecido Adiposo/citologia , Células Progenitoras Endoteliais/transplante , Hipóxia-Isquemia Encefálica/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Células Progenitoras Endoteliais/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neuropilina-1/metabolismo , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo , Células-Tronco/metabolismo , Resultado do Tratamento
16.
Biomed Res Int ; 2015: 862485, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509169

RESUMO

Neonatal hypoxic-ischemic (HI) brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs) from adipose-derived stem cells (ASCs) and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1) and vascular endothelial growth factor receptor 2 (VEGFR2) was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment.


Assuntos
Células Endoteliais/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Infarto/terapia , Neuropilina-1/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Infarto/genética , Infarto/patologia , Neuropilina-1/biossíntese , Proteína Oncogênica v-akt/biossíntese , Proteína Oncogênica v-akt/genética , Ratos , Transdução de Sinais , Transplante de Células-Tronco , Células-Tronco/metabolismo , Estresse Mecânico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
18.
Biomaterials ; 35(7): 2234-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24360575

RESUMO

Suboptimal repair occurs in a peripheral nerve gap, which can be partially restored by bridging the gap with various biosynthetic conduits or cell-based therapy. In this study, we developed a combination of chitosan coating approach to induce neurosphere cells from human adipose-derived stem cells (ASCs) on chitosan-coated plate and then applied these cells to the interior of a chitosan-coated silicone tube to bridge a 10-mm gap in a rat sciatic nerve. Myelin sheath degeneration and glial scar formation were discovered in the nerve bridged by the silicone conduit. By using a single treatment of chitosan-coated conduit or neurosphere cell therapy, the nerve gap was partially recovered after 6 weeks of surgery. Substantial improvements in nerve regeneration were achieved by combining neurosphere cells and chitosan-coated conduit based on the increase of myelinated axons density and myelin thickness, gastrocnemius muscle weight and muscle fiber diameter, and step and stride lengths from gait analysis. High expressions of interleukin-1ß and leukotriene B4 receptor 1 in the intra-neural scarring caused by using silicone conduits revealed that the inflammatory mechanism can be inhibited when the conduit is coated with chitosan. This study demonstrated that the chitosan-coated surface performs multiple functions that can be used to induce neurosphere cells from ASCs and to facilitate nerve regeneration in combination with a cells-assisted coated conduit.


Assuntos
Tecido Adiposo/citologia , Quitosana , Regeneração Nervosa , Nervo Isquiático/fisiologia , Células-Tronco/citologia , Animais , Células Cultivadas , Marcha , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA